用多传感技术评价纯蜂蜜和掺假蜂蜜的仿生味道

H. Maamor, F. A. Rashid, N. Z. I. Zakaria, A. Zakaria, L. Kamarudin, M. N. Jaafar, A. Y. Shakaff, Norazian Subari, N. Yusuf, S. Ismail, K. Adnan
{"title":"用多传感技术评价纯蜂蜜和掺假蜂蜜的仿生味道","authors":"H. Maamor, F. A. Rashid, N. Z. I. Zakaria, A. Zakaria, L. Kamarudin, M. N. Jaafar, A. Y. Shakaff, Norazian Subari, N. Yusuf, S. Ismail, K. Adnan","doi":"10.1109/ICED.2014.7015812","DOIUrl":null,"url":null,"abstract":"Current studies document the effectiveness of multi-sensing technique implementation to mimic or to complement human senses. This work demonstrated the successful application of multi-sensing techniques such electronic tongue (e-tongue), electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR). The fusion of these modalities enhance the classification of pure Tualang honey using Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), Support Vector Machine (SVM) and k-Nearest Neighbour (KNN). KNN and PNN are able to classify between pure and adulterated honey samples, outperform LDA and SVM. By performing data fusion, SVM and LDA classifier can achieved more than 80% accuracy, while KNN and PNN obtained greater precision, up to 96% correct classification. The findings confirmed that, multi-sensing technique; either KNN or PNN was significantly superior compared to SVM and LDA classification methods. Thus, both analyses are able to discriminate between pure and adulterated honey.","PeriodicalId":143806,"journal":{"name":"2014 2nd International Conference on Electronic Design (ICED)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bio-inspired taste assessment of pure and adulterated honey using multi-sensing technique\",\"authors\":\"H. Maamor, F. A. Rashid, N. Z. I. Zakaria, A. Zakaria, L. Kamarudin, M. N. Jaafar, A. Y. Shakaff, Norazian Subari, N. Yusuf, S. Ismail, K. Adnan\",\"doi\":\"10.1109/ICED.2014.7015812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current studies document the effectiveness of multi-sensing technique implementation to mimic or to complement human senses. This work demonstrated the successful application of multi-sensing techniques such electronic tongue (e-tongue), electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR). The fusion of these modalities enhance the classification of pure Tualang honey using Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), Support Vector Machine (SVM) and k-Nearest Neighbour (KNN). KNN and PNN are able to classify between pure and adulterated honey samples, outperform LDA and SVM. By performing data fusion, SVM and LDA classifier can achieved more than 80% accuracy, while KNN and PNN obtained greater precision, up to 96% correct classification. The findings confirmed that, multi-sensing technique; either KNN or PNN was significantly superior compared to SVM and LDA classification methods. Thus, both analyses are able to discriminate between pure and adulterated honey.\",\"PeriodicalId\":143806,\"journal\":{\"name\":\"2014 2nd International Conference on Electronic Design (ICED)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on Electronic Design (ICED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICED.2014.7015812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Electronic Design (ICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICED.2014.7015812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前的研究证明了多传感技术在模拟或补充人类感官方面的有效性。这项工作展示了电子舌(e-tongue)、电子鼻(e-nose)和傅立叶变换红外光谱(FTIR)等多传感技术的成功应用。利用线性判别分析(LDA)、概率神经网络(PNN)、支持向量机(SVM)和k-近邻(KNN)等方法对纯土朗蜂蜜进行分类。KNN和PNN能够对纯蜂蜜和掺假蜂蜜进行分类,优于LDA和SVM。通过数据融合,SVM和LDA分类器的准确率可以达到80%以上,而KNN和PNN的准确率更高,分类正确率高达96%。研究结果证实,多传感技术;与SVM和LDA分类方法相比,KNN和PNN的分类效果都有显著的优越性。因此,两种分析都能够区分纯蜂蜜和掺假蜂蜜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired taste assessment of pure and adulterated honey using multi-sensing technique
Current studies document the effectiveness of multi-sensing technique implementation to mimic or to complement human senses. This work demonstrated the successful application of multi-sensing techniques such electronic tongue (e-tongue), electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR). The fusion of these modalities enhance the classification of pure Tualang honey using Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), Support Vector Machine (SVM) and k-Nearest Neighbour (KNN). KNN and PNN are able to classify between pure and adulterated honey samples, outperform LDA and SVM. By performing data fusion, SVM and LDA classifier can achieved more than 80% accuracy, while KNN and PNN obtained greater precision, up to 96% correct classification. The findings confirmed that, multi-sensing technique; either KNN or PNN was significantly superior compared to SVM and LDA classification methods. Thus, both analyses are able to discriminate between pure and adulterated honey.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信