安全关键实时系统中的不确定性建模:基于概率成分的分析

D. Khan, L. Santinelli, L. Cucu-Grosjean
{"title":"安全关键实时系统中的不确定性建模:基于概率成分的分析","authors":"D. Khan, L. Santinelli, L. Cucu-Grosjean","doi":"10.1109/SIES.2012.6356582","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel analysis for complex safety-critical real-time systems involving component-based design and abstraction models. The analysis combines deterministic and probabilistic models for component interfaces; based on the bounded curves (deterministically or probabilistically). These results, through the usage of probabilities, can offer different degrees of realtime guarantees (hard or soft), given the system the safety-requirement, and specification. This analysis framework has the flexibility to cope with the different levels of safety-requirement; by acting on the probabilistic bounds and exploring the trade-off between the accuracy of the model and system over-provisioning. Through a case-study we intend to show how the probabilistic abstraction can efficiently and effectively address different degrees of safety requirements in the safety-critical real-time systems.","PeriodicalId":219258,"journal":{"name":"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling uncertainties in safety-critical real-time systems: A probabilistic component-based analysis\",\"authors\":\"D. Khan, L. Santinelli, L. Cucu-Grosjean\",\"doi\":\"10.1109/SIES.2012.6356582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel analysis for complex safety-critical real-time systems involving component-based design and abstraction models. The analysis combines deterministic and probabilistic models for component interfaces; based on the bounded curves (deterministically or probabilistically). These results, through the usage of probabilities, can offer different degrees of realtime guarantees (hard or soft), given the system the safety-requirement, and specification. This analysis framework has the flexibility to cope with the different levels of safety-requirement; by acting on the probabilistic bounds and exploring the trade-off between the accuracy of the model and system over-provisioning. Through a case-study we intend to show how the probabilistic abstraction can efficiently and effectively address different degrees of safety requirements in the safety-critical real-time systems.\",\"PeriodicalId\":219258,\"journal\":{\"name\":\"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIES.2012.6356582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2012.6356582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种涉及基于组件的设计和抽象模型的复杂安全关键实时系统的新分析方法。该分析结合了组件接口的确定性和概率模型;基于有界曲线的(确定性的或概率的)。这些结果,通过概率的使用,可以提供不同程度的实时保证(硬的或软的),给定系统的安全需求和规范。该分析框架具有灵活性,能够适应不同层次的安全要求;通过作用于概率边界并探索模型准确性和系统过度供应之间的权衡。通过一个案例研究,我们打算展示概率抽象如何有效地解决安全关键实时系统中不同程度的安全需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling uncertainties in safety-critical real-time systems: A probabilistic component-based analysis
In this paper we present a novel analysis for complex safety-critical real-time systems involving component-based design and abstraction models. The analysis combines deterministic and probabilistic models for component interfaces; based on the bounded curves (deterministically or probabilistically). These results, through the usage of probabilities, can offer different degrees of realtime guarantees (hard or soft), given the system the safety-requirement, and specification. This analysis framework has the flexibility to cope with the different levels of safety-requirement; by acting on the probabilistic bounds and exploring the trade-off between the accuracy of the model and system over-provisioning. Through a case-study we intend to show how the probabilistic abstraction can efficiently and effectively address different degrees of safety requirements in the safety-critical real-time systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信