HER2/CEN17生物标志物在SISH图像中的检测和历史评分

Z. Rehman, M. F. A. Fauzi, Wan Siti Halimatul Munirah Wan Ahmad, P. Cheah, L. Looi, Toh Yen Fa, F. S. Abas
{"title":"HER2/CEN17生物标志物在SISH图像中的检测和历史评分","authors":"Z. Rehman, M. F. A. Fauzi, Wan Siti Halimatul Munirah Wan Ahmad, P. Cheah, L. Looi, Toh Yen Fa, F. S. Abas","doi":"10.1109/ISPACS57703.2022.10082765","DOIUrl":null,"url":null,"abstract":"This article presents a method for assessing HER2/CEN17 status from genetic biomarkers using SISH (Silver-enhanced in situ hybridization) images, that are helpful in the diagnosis procedure of breast cancer. SISH staining does not require the use of expensive or advanced microscopes, it can be performed using ordinary bright field microscopes. A combination of image analysis and traditional machine learning approach is used for detection of the biomarkers. The method used Gabor filter bank and K-means clustering for the detection of red, and blue signals. The proposed method's quantitative and visual results show that it is effective in diagnosing breast cancer. When evaluating the HER2 status of primary breast cancer, we conclude that SISH and bright field microscopy are excellent alternatives to FISH and CISH.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and histo-scoring of HER2/CEN17 biomarkers in SISH images\",\"authors\":\"Z. Rehman, M. F. A. Fauzi, Wan Siti Halimatul Munirah Wan Ahmad, P. Cheah, L. Looi, Toh Yen Fa, F. S. Abas\",\"doi\":\"10.1109/ISPACS57703.2022.10082765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a method for assessing HER2/CEN17 status from genetic biomarkers using SISH (Silver-enhanced in situ hybridization) images, that are helpful in the diagnosis procedure of breast cancer. SISH staining does not require the use of expensive or advanced microscopes, it can be performed using ordinary bright field microscopes. A combination of image analysis and traditional machine learning approach is used for detection of the biomarkers. The method used Gabor filter bank and K-means clustering for the detection of red, and blue signals. The proposed method's quantitative and visual results show that it is effective in diagnosing breast cancer. When evaluating the HER2 status of primary breast cancer, we conclude that SISH and bright field microscopy are excellent alternatives to FISH and CISH.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种利用SISH(银增强原位杂交)图像从遗传生物标志物中评估HER2/CEN17状态的方法,这有助于乳腺癌的诊断过程。SISH染色不需要使用昂贵或先进的显微镜,它可以使用普通的亮场显微镜进行。结合图像分析和传统的机器学习方法用于生物标志物的检测。该方法使用Gabor滤波器组和K-means聚类来检测红色和蓝色信号。该方法的定量和可视化结果表明,它对乳腺癌的诊断是有效的。在评估原发性乳腺癌的HER2状态时,我们得出结论,SISH和明场显微镜是FISH和CISH的优秀替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and histo-scoring of HER2/CEN17 biomarkers in SISH images
This article presents a method for assessing HER2/CEN17 status from genetic biomarkers using SISH (Silver-enhanced in situ hybridization) images, that are helpful in the diagnosis procedure of breast cancer. SISH staining does not require the use of expensive or advanced microscopes, it can be performed using ordinary bright field microscopes. A combination of image analysis and traditional machine learning approach is used for detection of the biomarkers. The method used Gabor filter bank and K-means clustering for the detection of red, and blue signals. The proposed method's quantitative and visual results show that it is effective in diagnosing breast cancer. When evaluating the HER2 status of primary breast cancer, we conclude that SISH and bright field microscopy are excellent alternatives to FISH and CISH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信