基于乘法误差形状模型和网络流标记的多扩展目标跟踪GM-PHD滤波器

Florian Teich, Shishan Yang, M. Baum
{"title":"基于乘法误差形状模型和网络流标记的多扩展目标跟踪GM-PHD滤波器","authors":"Florian Teich, Shishan Yang, M. Baum","doi":"10.1109/IVS.2017.7995691","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel implementation of the Probability Density Hypotheses (PHD) filter for tracking an unknown number of extended objects. For this purpose, we first show how a recently developed Kalman filter-based method for elliptic shape tracking can be embedded into the Gaussian Mixture PHD (GM-PHD) filter framework. Second, we propose a track labeling method based on a Minimum-Cost flow (MCF) formulation, which is inspired by tracking-by-detection algorithms from computer vision. In conjunction with the GM-PHD filter and using a dynamic-programming approach to solve the network flow problem, the overall method is able to achieve a consistent and efficient tracking of multiple extended objects. The benefits of the developed method are illustrated by means of simulated scenarios.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GM-PHD filter for multiple extended object tracking based on the multiplicative error shape model and network flow labeling\",\"authors\":\"Florian Teich, Shishan Yang, M. Baum\",\"doi\":\"10.1109/IVS.2017.7995691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a novel implementation of the Probability Density Hypotheses (PHD) filter for tracking an unknown number of extended objects. For this purpose, we first show how a recently developed Kalman filter-based method for elliptic shape tracking can be embedded into the Gaussian Mixture PHD (GM-PHD) filter framework. Second, we propose a track labeling method based on a Minimum-Cost flow (MCF) formulation, which is inspired by tracking-by-detection algorithms from computer vision. In conjunction with the GM-PHD filter and using a dynamic-programming approach to solve the network flow problem, the overall method is able to achieve a consistent and efficient tracking of multiple extended objects. The benefits of the developed method are illustrated by means of simulated scenarios.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们提出了一种新的概率密度假设(PHD)滤波器的实现,用于跟踪未知数量的扩展对象。为此,我们首先展示了如何将最近开发的基于卡尔曼滤波器的椭圆形状跟踪方法嵌入到高斯混合PHD (GM-PHD)滤波器框架中。其次,我们提出了一种基于最小成本流(MCF)公式的轨迹标记方法,该方法受到计算机视觉中检测跟踪算法的启发。结合GM-PHD滤波器,采用动态规划方法求解网络流问题,整体方法能够实现对多个扩展对象的一致高效跟踪。仿真结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GM-PHD filter for multiple extended object tracking based on the multiplicative error shape model and network flow labeling
In this work, we propose a novel implementation of the Probability Density Hypotheses (PHD) filter for tracking an unknown number of extended objects. For this purpose, we first show how a recently developed Kalman filter-based method for elliptic shape tracking can be embedded into the Gaussian Mixture PHD (GM-PHD) filter framework. Second, we propose a track labeling method based on a Minimum-Cost flow (MCF) formulation, which is inspired by tracking-by-detection algorithms from computer vision. In conjunction with the GM-PHD filter and using a dynamic-programming approach to solve the network flow problem, the overall method is able to achieve a consistent and efficient tracking of multiple extended objects. The benefits of the developed method are illustrated by means of simulated scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信