基于改进粒子群优化模糊PID的充电策略研究

Li Xinyu, Huang Liang, Cheng Bowen
{"title":"基于改进粒子群优化模糊PID的充电策略研究","authors":"Li Xinyu, Huang Liang, Cheng Bowen","doi":"10.1109/PSET56192.2022.10100524","DOIUrl":null,"url":null,"abstract":"In order to improve the control accuracy of the charging control system, a control system combining the improved particle swarm optimization algorithm with fuzzy PID control is proposed. The input current/voltage signal of the Buck-Boost converter and the feedback signal and other parameters are used as the input signal of the improved particle swarm optimized PID controller, and the quantization factor $K_{\\mathrm{e}}, K_{\\mathrm{e}c}$ is obtained through the improved particle swarm iterative optimization, and $K_{\\mathrm{e}c}, K_{\\mathrm{e}}$ is subjected to fuzzification and anti-fuzzification, and the control accuracy is improved by dynamically adjusting the weight factor. The Matlab simulation results show that the improved particle swarm optimized fuzzy PID has small overshoot, short adjustment time, no oscillation, strong adaptive capability, good perturbation compensation, improved robustness of the system, and can improve the control accuracy and charging efficiency of the charging control system.","PeriodicalId":402897,"journal":{"name":"2022 IEEE International Conference on Power Systems and Electrical Technology (PSET)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Charging Strategy Based on Improved PSO Optimized Fuzzy PID\",\"authors\":\"Li Xinyu, Huang Liang, Cheng Bowen\",\"doi\":\"10.1109/PSET56192.2022.10100524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the control accuracy of the charging control system, a control system combining the improved particle swarm optimization algorithm with fuzzy PID control is proposed. The input current/voltage signal of the Buck-Boost converter and the feedback signal and other parameters are used as the input signal of the improved particle swarm optimized PID controller, and the quantization factor $K_{\\\\mathrm{e}}, K_{\\\\mathrm{e}c}$ is obtained through the improved particle swarm iterative optimization, and $K_{\\\\mathrm{e}c}, K_{\\\\mathrm{e}}$ is subjected to fuzzification and anti-fuzzification, and the control accuracy is improved by dynamically adjusting the weight factor. The Matlab simulation results show that the improved particle swarm optimized fuzzy PID has small overshoot, short adjustment time, no oscillation, strong adaptive capability, good perturbation compensation, improved robustness of the system, and can improve the control accuracy and charging efficiency of the charging control system.\",\"PeriodicalId\":402897,\"journal\":{\"name\":\"2022 IEEE International Conference on Power Systems and Electrical Technology (PSET)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Power Systems and Electrical Technology (PSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PSET56192.2022.10100524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Power Systems and Electrical Technology (PSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSET56192.2022.10100524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高加料控制系统的控制精度,提出了一种将改进粒子群优化算法与模糊PID控制相结合的控制系统。将Buck-Boost变换器的输入电流/电压信号和反馈信号及其他参数作为改进粒子群优化PID控制器的输入信号,通过改进粒子群迭代优化得到量化因子$K_{\mathrm{e}}、K_{\mathrm{e}}}$,并对$K_{\mathrm{e}} c}、K_{\mathrm{e}}$进行模糊化和反模糊化处理,通过动态调整权重因子提高控制精度。Matlab仿真结果表明,改进的粒子群优化模糊PID超调量小、调整时间短、无振荡、自适应能力强、扰动补偿效果好,提高了系统的鲁棒性,能够提高装药控制系统的控制精度和装药效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Charging Strategy Based on Improved PSO Optimized Fuzzy PID
In order to improve the control accuracy of the charging control system, a control system combining the improved particle swarm optimization algorithm with fuzzy PID control is proposed. The input current/voltage signal of the Buck-Boost converter and the feedback signal and other parameters are used as the input signal of the improved particle swarm optimized PID controller, and the quantization factor $K_{\mathrm{e}}, K_{\mathrm{e}c}$ is obtained through the improved particle swarm iterative optimization, and $K_{\mathrm{e}c}, K_{\mathrm{e}}$ is subjected to fuzzification and anti-fuzzification, and the control accuracy is improved by dynamically adjusting the weight factor. The Matlab simulation results show that the improved particle swarm optimized fuzzy PID has small overshoot, short adjustment time, no oscillation, strong adaptive capability, good perturbation compensation, improved robustness of the system, and can improve the control accuracy and charging efficiency of the charging control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信