一类极大二元单项式

Hajime Machida, J. Pantović
{"title":"一类极大二元单项式","authors":"Hajime Machida, J. Pantović","doi":"10.1109/ISMVL.2018.00022","DOIUrl":null,"url":null,"abstract":"The lattice of closed sets of monomials generated by a monomial of the form xy t over a finite field GF(k) is isomorphic to the lattice of divisors of k-1. If a monomial xy t generates a maximal element in that lattice, does it also generate a maximal element in the poset of closed sets generated by singleton binary monomials? This is the question studied in this paper. We have proven that over some finite fields xy 2 is a unique such monomial.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One Class of Maximal Binary Monomials\",\"authors\":\"Hajime Machida, J. Pantović\",\"doi\":\"10.1109/ISMVL.2018.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lattice of closed sets of monomials generated by a monomial of the form xy t over a finite field GF(k) is isomorphic to the lattice of divisors of k-1. If a monomial xy t generates a maximal element in that lattice, does it also generate a maximal element in the poset of closed sets generated by singleton binary monomials? This is the question studied in this paper. We have proven that over some finite fields xy 2 is a unique such monomial.\",\"PeriodicalId\":434323,\"journal\":{\"name\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2018.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在有限域GF(k)上由形式为xy t的单项式生成的单项式闭集格与k-1的除数格同构。如果一个单项式xy t在那个格中产生了一个极大元素,它是否也在由单项式产生的闭集的偏置集中产生了一个极大元素?这就是本文研究的问题。我们已经证明了在某些有限域上,xy 2是唯一的这样的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One Class of Maximal Binary Monomials
The lattice of closed sets of monomials generated by a monomial of the form xy t over a finite field GF(k) is isomorphic to the lattice of divisors of k-1. If a monomial xy t generates a maximal element in that lattice, does it also generate a maximal element in the poset of closed sets generated by singleton binary monomials? This is the question studied in this paper. We have proven that over some finite fields xy 2 is a unique such monomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信