自动驾驶汽车计算机视觉并行化算法

Kaniskaa Ms, R. Manimegalai, N. Sk
{"title":"自动驾驶汽车计算机视觉并行化算法","authors":"Kaniskaa Ms, R. Manimegalai, N. Sk","doi":"10.1109/ViTECoN58111.2023.10157031","DOIUrl":null,"url":null,"abstract":"The important features that enable computer vision in autonomous vehicle technology and infotainment function are image processing and object identification. Image segmentation is the preliminary step of any image processing algorithm. This work uses the Union-Find algorithm to segment images on a grey scale. It is a simple yet effective algorithm for intense applications. A review of the image segmentation algorithms and parallelization techniques is presented in this paper. Initially, three different profiling techniques are applied in order to identify the hot-spots, i.e. most time-consuming parts of the code. Parallelization techniques are applied to the regions of the hot-spots identified during profiling. The Union-Find algorithm is parallelized using OpenMP, MPI, and CUDA. The execution time decreases with the increase in the number of threads till a certain optimal value of threads. The optimal number of threads is found for the respective parallelization techniques.","PeriodicalId":407488,"journal":{"name":"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallelization Algorithm of Computer Vision for Autonomous Vehicles\",\"authors\":\"Kaniskaa Ms, R. Manimegalai, N. Sk\",\"doi\":\"10.1109/ViTECoN58111.2023.10157031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The important features that enable computer vision in autonomous vehicle technology and infotainment function are image processing and object identification. Image segmentation is the preliminary step of any image processing algorithm. This work uses the Union-Find algorithm to segment images on a grey scale. It is a simple yet effective algorithm for intense applications. A review of the image segmentation algorithms and parallelization techniques is presented in this paper. Initially, three different profiling techniques are applied in order to identify the hot-spots, i.e. most time-consuming parts of the code. Parallelization techniques are applied to the regions of the hot-spots identified during profiling. The Union-Find algorithm is parallelized using OpenMP, MPI, and CUDA. The execution time decreases with the increase in the number of threads till a certain optimal value of threads. The optimal number of threads is found for the respective parallelization techniques.\",\"PeriodicalId\":407488,\"journal\":{\"name\":\"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ViTECoN58111.2023.10157031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ViTECoN58111.2023.10157031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自动驾驶汽车技术和信息娱乐功能中实现计算机视觉的重要特征是图像处理和物体识别。图像分割是任何图像处理算法的第一步。这项工作使用Union-Find算法在灰度上分割图像。它是一种简单而有效的算法。本文对图像分割算法和并行化技术进行了综述。最初,为了识别热点,即代码中最耗时的部分,应用了三种不同的分析技术。并行化技术应用于分析过程中识别的热点区域。Union-Find算法使用OpenMP、MPI和CUDA并行化。执行时间随着线程数的增加而减少,直到线程数达到一定的最优值。为各自的并行化技术找到最佳的线程数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization Algorithm of Computer Vision for Autonomous Vehicles
The important features that enable computer vision in autonomous vehicle technology and infotainment function are image processing and object identification. Image segmentation is the preliminary step of any image processing algorithm. This work uses the Union-Find algorithm to segment images on a grey scale. It is a simple yet effective algorithm for intense applications. A review of the image segmentation algorithms and parallelization techniques is presented in this paper. Initially, three different profiling techniques are applied in order to identify the hot-spots, i.e. most time-consuming parts of the code. Parallelization techniques are applied to the regions of the hot-spots identified during profiling. The Union-Find algorithm is parallelized using OpenMP, MPI, and CUDA. The execution time decreases with the increase in the number of threads till a certain optimal value of threads. The optimal number of threads is found for the respective parallelization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信