基于无线步态传感器和支持向量机分类器的正常与患者步态分类

Taro Nakano, B. T. Nukala, J. Tsay, S. Zupancic, Amanda Rodriguez, D. Lie, Jerry Lopez, Tam Q. Nguyen
{"title":"基于无线步态传感器和支持向量机分类器的正常与患者步态分类","authors":"Taro Nakano, B. T. Nukala, J. Tsay, S. Zupancic, Amanda Rodriguez, D. Lie, Jerry Lopez, Tam Q. Nguyen","doi":"10.4018/IJSI.2017010102","DOIUrl":null,"url":null,"abstract":"Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, we took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, we used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, we should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.","PeriodicalId":336322,"journal":{"name":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Gaits classification of normal vs. patients by wireless gait sensor and Support Vector Machine (SVM) classifier\",\"authors\":\"Taro Nakano, B. T. Nukala, J. Tsay, S. Zupancic, Amanda Rodriguez, D. Lie, Jerry Lopez, Tam Q. Nguyen\",\"doi\":\"10.4018/IJSI.2017010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, we took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, we used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, we should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.\",\"PeriodicalId\":336322,\"journal\":{\"name\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSI.2017010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSI.2017010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

由于严重关注平衡障碍患者的跌倒风险,因此希望能够使用廉价的可穿戴传感器在实时动态步态测试中客观地识别这些患者。在这项工作中,我们对7名人类受试者(3名正常受试者和4名患者)进行了49次步态测试,其中每个人通过在T4胸椎上佩戴无线步态传感器进行了7次动态步态指数(DGI)测试。原始步态数据被无线传输到附近的PC机进行实时步态数据收集。为了从步态数据中客观地识别患者,我们基于从原始步态数据中提取的6个特征,使用4种不同类型的支持向量机(SVM)分类器:线性支持向量机(Linear SVM)、二次支持向量机(Quadratic SVM)、三次支持向量机(Cubic SVM)和高斯支持向量机(Gaussian SVM)。在本研究中,线性支持向量机、二次支持向量机和三次支持向量机的分类准确率均达到了令人印象深刻的98%,灵敏度为95.2%,特异性为100%。而高斯支持向量机分类器的准确率仅为87.8%,灵敏度为71.7%,特异性为100%。在如此少量的人类受试者中获得的结果表明,在不久的将来,我们应该能够在实时动态步态测试中使用智能SVM分类器客观地识别出平衡障碍患者和正常受试者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaits classification of normal vs. patients by wireless gait sensor and Support Vector Machine (SVM) classifier
Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, we took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, we used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, we should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信