液晶中向列-各向同性相变的多谐马尔可夫链蒙特卡罗模拟

A. Chakravarthy, K. Venu, V. Sastry, K. Murthy
{"title":"液晶中向列-各向同性相变的多谐马尔可夫链蒙特卡罗模拟","authors":"A. Chakravarthy, K. Venu, V. Sastry, K. Murthy","doi":"10.1117/12.581100","DOIUrl":null,"url":null,"abstract":"Temperature driven first order transition from isotropic to nematic phase in liquid crystals with and without random and quenched orientational disorder is investigated employing multicanonical Monte Carlo simulation. A lattice model with periodic boundary conditions is employed with the pair wise interaction of two nearest neighbor liquid crystal molecules given by the Lebwohl-Lasher potential. The transition temperature decreases with increase of disorder; also the transition appears to soften under strong disorder.","PeriodicalId":132866,"journal":{"name":"Liquid crystals (Print)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multicanonical Markov chain Monte Carlo simulation of nematic-isotropic phase transition in liquid crystals\",\"authors\":\"A. Chakravarthy, K. Venu, V. Sastry, K. Murthy\",\"doi\":\"10.1117/12.581100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature driven first order transition from isotropic to nematic phase in liquid crystals with and without random and quenched orientational disorder is investigated employing multicanonical Monte Carlo simulation. A lattice model with periodic boundary conditions is employed with the pair wise interaction of two nearest neighbor liquid crystal molecules given by the Lebwohl-Lasher potential. The transition temperature decreases with increase of disorder; also the transition appears to soften under strong disorder.\",\"PeriodicalId\":132866,\"journal\":{\"name\":\"Liquid crystals (Print)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid crystals (Print)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.581100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid crystals (Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.581100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用蒙特卡罗多谐模拟研究了具有和不具有随机和淬火取向无序的液晶在温度驱动下从各向同性到向列相的一阶相变。采用具有周期边界条件的晶格模型,用Lebwohl-Lasher势给出了两个最近邻液晶分子的对相互作用。转变温度随无序度的增加而降低;此外,在强烈的无序状态下,这种转变似乎会变得柔和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicanonical Markov chain Monte Carlo simulation of nematic-isotropic phase transition in liquid crystals
Temperature driven first order transition from isotropic to nematic phase in liquid crystals with and without random and quenched orientational disorder is investigated employing multicanonical Monte Carlo simulation. A lattice model with periodic boundary conditions is employed with the pair wise interaction of two nearest neighbor liquid crystal molecules given by the Lebwohl-Lasher potential. The transition temperature decreases with increase of disorder; also the transition appears to soften under strong disorder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信