{"title":"面向平均场控制的粒子滤波方法","authors":"Tao Yang, P. Mehta, Sean P. Meyn","doi":"10.1109/ACC.2011.5991422","DOIUrl":null,"url":null,"abstract":"A new formulation of the particle filter for non linear filtering is presented, based on concepts from optimal control, and from the mean-field game theory framework of Huang et. al.. The optimal control is chosen so that the posterior distribution of a particle matches as closely as possible the posterior distribution of the true state, given the observations. In the infinite-N limit, the empirical distribution of ensemble particles converges to the posterior distribution of an individual particle. The cost function in this control problem is the Kullback Leibler (K-L) divergence between the actual posterior, and the posterior of any particle. The optimal control input is characterized by a certain Euler-Lagrange (E-L) equation. A numerical algorithm is introduced and implemented in two general examples: A linear SDE with partial linear observations, and a nonlinear oscillator perturbed by white noise, with partial nonlinear observations.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"A mean-field control-oriented approach to particle filtering\",\"authors\":\"Tao Yang, P. Mehta, Sean P. Meyn\",\"doi\":\"10.1109/ACC.2011.5991422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new formulation of the particle filter for non linear filtering is presented, based on concepts from optimal control, and from the mean-field game theory framework of Huang et. al.. The optimal control is chosen so that the posterior distribution of a particle matches as closely as possible the posterior distribution of the true state, given the observations. In the infinite-N limit, the empirical distribution of ensemble particles converges to the posterior distribution of an individual particle. The cost function in this control problem is the Kullback Leibler (K-L) divergence between the actual posterior, and the posterior of any particle. The optimal control input is characterized by a certain Euler-Lagrange (E-L) equation. A numerical algorithm is introduced and implemented in two general examples: A linear SDE with partial linear observations, and a nonlinear oscillator perturbed by white noise, with partial nonlinear observations.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A mean-field control-oriented approach to particle filtering
A new formulation of the particle filter for non linear filtering is presented, based on concepts from optimal control, and from the mean-field game theory framework of Huang et. al.. The optimal control is chosen so that the posterior distribution of a particle matches as closely as possible the posterior distribution of the true state, given the observations. In the infinite-N limit, the empirical distribution of ensemble particles converges to the posterior distribution of an individual particle. The cost function in this control problem is the Kullback Leibler (K-L) divergence between the actual posterior, and the posterior of any particle. The optimal control input is characterized by a certain Euler-Lagrange (E-L) equation. A numerical algorithm is introduced and implemented in two general examples: A linear SDE with partial linear observations, and a nonlinear oscillator perturbed by white noise, with partial nonlinear observations.