面向平均场控制的粒子滤波方法

Tao Yang, P. Mehta, Sean P. Meyn
{"title":"面向平均场控制的粒子滤波方法","authors":"Tao Yang, P. Mehta, Sean P. Meyn","doi":"10.1109/ACC.2011.5991422","DOIUrl":null,"url":null,"abstract":"A new formulation of the particle filter for non linear filtering is presented, based on concepts from optimal control, and from the mean-field game theory framework of Huang et. al.. The optimal control is chosen so that the posterior distribution of a particle matches as closely as possible the posterior distribution of the true state, given the observations. In the infinite-N limit, the empirical distribution of ensemble particles converges to the posterior distribution of an individual particle. The cost function in this control problem is the Kullback Leibler (K-L) divergence between the actual posterior, and the posterior of any particle. The optimal control input is characterized by a certain Euler-Lagrange (E-L) equation. A numerical algorithm is introduced and implemented in two general examples: A linear SDE with partial linear observations, and a nonlinear oscillator perturbed by white noise, with partial nonlinear observations.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"A mean-field control-oriented approach to particle filtering\",\"authors\":\"Tao Yang, P. Mehta, Sean P. Meyn\",\"doi\":\"10.1109/ACC.2011.5991422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new formulation of the particle filter for non linear filtering is presented, based on concepts from optimal control, and from the mean-field game theory framework of Huang et. al.. The optimal control is chosen so that the posterior distribution of a particle matches as closely as possible the posterior distribution of the true state, given the observations. In the infinite-N limit, the empirical distribution of ensemble particles converges to the posterior distribution of an individual particle. The cost function in this control problem is the Kullback Leibler (K-L) divergence between the actual posterior, and the posterior of any particle. The optimal control input is characterized by a certain Euler-Lagrange (E-L) equation. A numerical algorithm is introduced and implemented in two general examples: A linear SDE with partial linear observations, and a nonlinear oscillator perturbed by white noise, with partial nonlinear observations.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

基于最优控制的概念和Huang等人的平均场博弈论框架,提出了一种用于非线性滤波的粒子滤波器的新公式。选择最优控制,使粒子的后验分布尽可能与给定观测值的真实状态的后验分布匹配。在无限n极限下,系综粒子的经验分布收敛于单个粒子的后验分布。这个控制问题的代价函数是实际后验与任意粒子的后验之间的K-L散度。最优控制输入用欧拉-拉格朗日(E-L)方程表示。本文介绍了一种数值算法,并在两个一般例子中实现:具有部分线性观测值的线性SDE和具有部分非线性观测值的受白噪声扰动的非线性振荡器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mean-field control-oriented approach to particle filtering
A new formulation of the particle filter for non linear filtering is presented, based on concepts from optimal control, and from the mean-field game theory framework of Huang et. al.. The optimal control is chosen so that the posterior distribution of a particle matches as closely as possible the posterior distribution of the true state, given the observations. In the infinite-N limit, the empirical distribution of ensemble particles converges to the posterior distribution of an individual particle. The cost function in this control problem is the Kullback Leibler (K-L) divergence between the actual posterior, and the posterior of any particle. The optimal control input is characterized by a certain Euler-Lagrange (E-L) equation. A numerical algorithm is introduced and implemented in two general examples: A linear SDE with partial linear observations, and a nonlinear oscillator perturbed by white noise, with partial nonlinear observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信