基于小波提取的纹理分类:一种触觉纹理搜索方法

Waskito Adi, S. Sulaiman
{"title":"基于小波提取的纹理分类:一种触觉纹理搜索方法","authors":"Waskito Adi, S. Sulaiman","doi":"10.1109/CITISIA.2009.5224167","DOIUrl":null,"url":null,"abstract":"While visual texture classification is a widely-research topic in image analysis, little is known on its counterpart i.e. the haptic (touch) texture. This paper examines the visual texture classification in order to investigate how well it could be used for haptic texture search engine. In classifying the visual textures, feature extraction for a given image involving wavelet decomposition is used to obtain the transformation coefficients. Feature vectors are formed using energy signature from each wavelet sub-band coefficient. We conducted an experiment to investigate the extent in which wavelet decomposition could be used in haptic texture search engine. The experimental result, based on different testing data, shows that feature extraction using wavelet decomposition achieve accuracy rate more than 96%. This demonstrates that wavelet decomposition and energy signature is effective in extracting information from a visual texture. Based on this finding, we discuss on the suitability of wavelet decomposition for haptic texture searching, in terms of extracting information from image and haptic information.","PeriodicalId":144722,"journal":{"name":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Texture classification using wavelet extraction: An approach to haptic texture searching\",\"authors\":\"Waskito Adi, S. Sulaiman\",\"doi\":\"10.1109/CITISIA.2009.5224167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While visual texture classification is a widely-research topic in image analysis, little is known on its counterpart i.e. the haptic (touch) texture. This paper examines the visual texture classification in order to investigate how well it could be used for haptic texture search engine. In classifying the visual textures, feature extraction for a given image involving wavelet decomposition is used to obtain the transformation coefficients. Feature vectors are formed using energy signature from each wavelet sub-band coefficient. We conducted an experiment to investigate the extent in which wavelet decomposition could be used in haptic texture search engine. The experimental result, based on different testing data, shows that feature extraction using wavelet decomposition achieve accuracy rate more than 96%. This demonstrates that wavelet decomposition and energy signature is effective in extracting information from a visual texture. Based on this finding, we discuss on the suitability of wavelet decomposition for haptic texture searching, in terms of extracting information from image and haptic information.\",\"PeriodicalId\":144722,\"journal\":{\"name\":\"2009 Innovative Technologies in Intelligent Systems and Industrial Applications\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Innovative Technologies in Intelligent Systems and Industrial Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITISIA.2009.5224167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA.2009.5224167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视觉纹理分类是图像分析中一个被广泛研究的课题,但对触觉纹理分类却知之甚少。本文对视觉纹理分类进行了研究,以探讨视觉纹理分类在触觉纹理搜索引擎中的应用。在视觉纹理分类中,利用小波分解对给定图像进行特征提取,得到变换系数。利用每个小波子带系数的能量特征形成特征向量。通过实验研究了小波分解在触觉纹理搜索引擎中的应用程度。基于不同测试数据的实验结果表明,利用小波分解进行特征提取的准确率达到96%以上。实验结果表明,小波分解和能量签名可以有效地从视觉纹理中提取信息。在此基础上,从图像信息提取和触觉信息提取两方面讨论了小波分解在触觉纹理搜索中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture classification using wavelet extraction: An approach to haptic texture searching
While visual texture classification is a widely-research topic in image analysis, little is known on its counterpart i.e. the haptic (touch) texture. This paper examines the visual texture classification in order to investigate how well it could be used for haptic texture search engine. In classifying the visual textures, feature extraction for a given image involving wavelet decomposition is used to obtain the transformation coefficients. Feature vectors are formed using energy signature from each wavelet sub-band coefficient. We conducted an experiment to investigate the extent in which wavelet decomposition could be used in haptic texture search engine. The experimental result, based on different testing data, shows that feature extraction using wavelet decomposition achieve accuracy rate more than 96%. This demonstrates that wavelet decomposition and energy signature is effective in extracting information from a visual texture. Based on this finding, we discuss on the suitability of wavelet decomposition for haptic texture searching, in terms of extracting information from image and haptic information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信