实时嵌入式系统错误检测实现的硬件/软件优化

A. Lifa, P. Eles, Zebo Peng, V. Izosimov
{"title":"实时嵌入式系统错误检测实现的硬件/软件优化","authors":"A. Lifa, P. Eles, Zebo Peng, V. Izosimov","doi":"10.1145/1878961.1878970","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to system-level optimization of error detection implementation in the context of fault-tolerant real-time distributed embedded systems used for safety-critical applications. An application is modeled as a set of processes communicating by messages. Processes are mapped on computation nodes connected to the communication infrastructure. To provide resiliency against transient faults, efficient error detection and recovery techniques have to be employed. Our main focus in this paper is on the efficient implementation of the error detection mechanisms. We have developed techniques to optimize the hardware/software implementation of error detection, in order to minimize the global worst-case schedule length, while meeting the imposed hardware cost constraints and tolerating multiple transient faults. We present two design optimization algorithms which are able to find feasible solutions given a limited amount of resources: the first one assumes that, when implemented in hardware, error detection is deployed on static reconfigurable FPGAs, while the second one considers partial dynamic reconfiguration capabilities of the FPGAs.","PeriodicalId":118816,"journal":{"name":"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hardware/software optimization of error detection implementation for real-time embedded systems\",\"authors\":\"A. Lifa, P. Eles, Zebo Peng, V. Izosimov\",\"doi\":\"10.1145/1878961.1878970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to system-level optimization of error detection implementation in the context of fault-tolerant real-time distributed embedded systems used for safety-critical applications. An application is modeled as a set of processes communicating by messages. Processes are mapped on computation nodes connected to the communication infrastructure. To provide resiliency against transient faults, efficient error detection and recovery techniques have to be employed. Our main focus in this paper is on the efficient implementation of the error detection mechanisms. We have developed techniques to optimize the hardware/software implementation of error detection, in order to minimize the global worst-case schedule length, while meeting the imposed hardware cost constraints and tolerating multiple transient faults. We present two design optimization algorithms which are able to find feasible solutions given a limited amount of resources: the first one assumes that, when implemented in hardware, error detection is deployed on static reconfigurable FPGAs, while the second one considers partial dynamic reconfiguration capabilities of the FPGAs.\",\"PeriodicalId\":118816,\"journal\":{\"name\":\"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1878961.1878970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878961.1878970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种用于安全关键应用的容错实时分布式嵌入式系统中错误检测实现的系统级优化方法。应用程序被建模为一组通过消息进行通信的流程。进程被映射到连接到通信基础设施的计算节点上。为了提供对瞬态故障的弹性,必须采用有效的错误检测和恢复技术。本文主要关注的是错误检测机制的有效实现。我们已经开发了优化错误检测的硬件/软件实现的技术,以最小化全局最坏情况进度长度,同时满足强加的硬件成本约束和容忍多个瞬态故障。我们提出了两种设计优化算法,它们能够在给定有限资源的情况下找到可行的解决方案:第一个假设,当在硬件中实现时,错误检测部署在静态可重构fpga上,而第二个考虑fpga的部分动态可重构能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware/software optimization of error detection implementation for real-time embedded systems
This paper presents an approach to system-level optimization of error detection implementation in the context of fault-tolerant real-time distributed embedded systems used for safety-critical applications. An application is modeled as a set of processes communicating by messages. Processes are mapped on computation nodes connected to the communication infrastructure. To provide resiliency against transient faults, efficient error detection and recovery techniques have to be employed. Our main focus in this paper is on the efficient implementation of the error detection mechanisms. We have developed techniques to optimize the hardware/software implementation of error detection, in order to minimize the global worst-case schedule length, while meeting the imposed hardware cost constraints and tolerating multiple transient faults. We present two design optimization algorithms which are able to find feasible solutions given a limited amount of resources: the first one assumes that, when implemented in hardware, error detection is deployed on static reconfigurable FPGAs, while the second one considers partial dynamic reconfiguration capabilities of the FPGAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信