一种带涌流控制方案的连续开关降压开关电容稳压器

Chengyue Yu, Xiang Zhang, L. Siek
{"title":"一种带涌流控制方案的连续开关降压开关电容稳压器","authors":"Chengyue Yu, Xiang Zhang, L. Siek","doi":"10.1109/ISICIR.2016.7829697","DOIUrl":null,"url":null,"abstract":"Switched-capacitor based regulator has its unique usage in various power management applications where both small foot print and flexible current capability is required since the switched-capacitor power stage is scalable with current rating and thus opens possibility of fully on-chip implementation whereas inductor based regulator is very limited by inductor size due to the only availability of off-chip inductor that can be used by relatively low switching frequency regardless of current capability. Thus switched-capacitor based regulator is very suitable for IoT application, where multiple power rail is needed but PCB size is very limited and external components are limited. In this paper, a ½ step-down power stage is introduced, analyzed. Furthermore, problem with the phenomena associated with switched-capacitor regulators is described and the scheme to overcome the issue. A full regulator architecture that regulates the inrush current is introduced and simulation results shows that the output ripple is greatly reduced compared to an open loop step down switched-capacitor power stage.","PeriodicalId":159343,"journal":{"name":"2016 International Symposium on Integrated Circuits (ISIC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A continuous switching mode step-down switched-capacitor regulator with inrush current control scheme\",\"authors\":\"Chengyue Yu, Xiang Zhang, L. Siek\",\"doi\":\"10.1109/ISICIR.2016.7829697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Switched-capacitor based regulator has its unique usage in various power management applications where both small foot print and flexible current capability is required since the switched-capacitor power stage is scalable with current rating and thus opens possibility of fully on-chip implementation whereas inductor based regulator is very limited by inductor size due to the only availability of off-chip inductor that can be used by relatively low switching frequency regardless of current capability. Thus switched-capacitor based regulator is very suitable for IoT application, where multiple power rail is needed but PCB size is very limited and external components are limited. In this paper, a ½ step-down power stage is introduced, analyzed. Furthermore, problem with the phenomena associated with switched-capacitor regulators is described and the scheme to overcome the issue. A full regulator architecture that regulates the inrush current is introduced and simulation results shows that the output ripple is greatly reduced compared to an open loop step down switched-capacitor power stage.\",\"PeriodicalId\":159343,\"journal\":{\"name\":\"2016 International Symposium on Integrated Circuits (ISIC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Integrated Circuits (ISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISICIR.2016.7829697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Integrated Circuits (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISICIR.2016.7829697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于开关电容的稳压器在各种电源管理应用中有其独特的用途,这些应用需要小占地面积和灵活的电流能力,因为开关电容功率级可随电流额定值扩展,从而开启了完全片上实现的可能性,而基于电感的稳压器受到电感尺寸的限制,因为只有片外电感可用,可以在相对较低的开关频率下使用,无论电流如何能力。因此,基于开关电容的稳压器非常适合物联网应用,其中需要多个电源导轨,但PCB尺寸非常有限,外部组件有限。本文介绍并分析了一种半降压功率级。此外,还描述了与开关电容调节器相关的现象的问题以及克服该问题的方案。介绍了一种调节浪涌电流的全稳压器结构,仿真结果表明,与开环降压开关电容级相比,输出纹波大大减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A continuous switching mode step-down switched-capacitor regulator with inrush current control scheme
Switched-capacitor based regulator has its unique usage in various power management applications where both small foot print and flexible current capability is required since the switched-capacitor power stage is scalable with current rating and thus opens possibility of fully on-chip implementation whereas inductor based regulator is very limited by inductor size due to the only availability of off-chip inductor that can be used by relatively low switching frequency regardless of current capability. Thus switched-capacitor based regulator is very suitable for IoT application, where multiple power rail is needed but PCB size is very limited and external components are limited. In this paper, a ½ step-down power stage is introduced, analyzed. Furthermore, problem with the phenomena associated with switched-capacitor regulators is described and the scheme to overcome the issue. A full regulator architecture that regulates the inrush current is introduced and simulation results shows that the output ripple is greatly reduced compared to an open loop step down switched-capacitor power stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信