计算Frobenius的轨迹

D. Gaitsgory, J. Lurie
{"title":"计算Frobenius的轨迹","authors":"D. Gaitsgory, J. Lurie","doi":"10.2307/j.ctv4v32qc.6","DOIUrl":null,"url":null,"abstract":"This chapter aims to compute the trace Tr(Frob-1 ¦H* (BunG(X);Zℓ)), where ℓ is a prime number which is invertible in F\n q. It follows the strategy outlined in Chapter 1. If X is an algebraic curve over the field C of complex numbers and G is a smooth affine group scheme over X whose fibers are semisimple and simply connected, then Theorem 1.5.4.10 (and Example 1.5.4.15) supply a quasi-isomorphism whose right-hand side is the continuous tensor product of Construction 1.5.4.8. The remainder of this chapter is devoted to explaining how Theorem 4.1.2.1 can be used to compute the trace of the arithmetic Frobenius automorphism on the ℓ-adic cohomology of BunG(X).","PeriodicalId":117918,"journal":{"name":"Weil's Conjecture for Function Fields","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the Trace of Frobenius\",\"authors\":\"D. Gaitsgory, J. Lurie\",\"doi\":\"10.2307/j.ctv4v32qc.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter aims to compute the trace Tr(Frob-1 ¦H* (BunG(X);Zℓ)), where ℓ is a prime number which is invertible in F\\n q. It follows the strategy outlined in Chapter 1. If X is an algebraic curve over the field C of complex numbers and G is a smooth affine group scheme over X whose fibers are semisimple and simply connected, then Theorem 1.5.4.10 (and Example 1.5.4.15) supply a quasi-isomorphism whose right-hand side is the continuous tensor product of Construction 1.5.4.8. The remainder of this chapter is devoted to explaining how Theorem 4.1.2.1 can be used to compute the trace of the arithmetic Frobenius automorphism on the ℓ-adic cohomology of BunG(X).\",\"PeriodicalId\":117918,\"journal\":{\"name\":\"Weil's Conjecture for Function Fields\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weil's Conjecture for Function Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv4v32qc.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weil's Conjecture for Function Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv4v32qc.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章的目的是计算迹Tr(Frob-1 μ H* (BunG(X);Z Z)),其中,r是一个质数,它在F q中是可逆的。它遵循第1章中概述的策略。如果X是复数域C上的代数曲线,G是X上的光滑仿射群格式,其纤维是半单连通的,则定理1.5.4.10(和例1.5.4.15)提供了一个右手边为构造1.5.4.8的连续张量积的拟同构。本章的剩余部分将解释如何使用4.1.2.1定理来计算BunG(X)的l -进上同调上的算术Frobenius自同构的迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the Trace of Frobenius
This chapter aims to compute the trace Tr(Frob-1 ¦H* (BunG(X);Zℓ)), where ℓ is a prime number which is invertible in F q. It follows the strategy outlined in Chapter 1. If X is an algebraic curve over the field C of complex numbers and G is a smooth affine group scheme over X whose fibers are semisimple and simply connected, then Theorem 1.5.4.10 (and Example 1.5.4.15) supply a quasi-isomorphism whose right-hand side is the continuous tensor product of Construction 1.5.4.8. The remainder of this chapter is devoted to explaining how Theorem 4.1.2.1 can be used to compute the trace of the arithmetic Frobenius automorphism on the ℓ-adic cohomology of BunG(X).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信