利用缓冲再分配实现组合电路的低功率栅极调整

V. Sundararajan, K. Parhi
{"title":"利用缓冲再分配实现组合电路的低功率栅极调整","authors":"V. Sundararajan, K. Parhi","doi":"10.1109/ARVLSI.1999.756047","DOIUrl":null,"url":null,"abstract":"Low power gate resizing can decrease the power dissipated in a technology mapped circuit while maintaining its critical path. Gate resizing operates as a post-mapping technique for power reduction by replacing some gates, which are faster than necessary, with smaller and slower gates from the underlying gate library. In this paper we propose a new transformation technique for combinational circuits referred to as buffer-redistribution. Buffer-redistribution is then used to model and solve the low-power discrete gate resizing problem in an exact manner in polynomial time and in a noniterative fashion for a complete gate library. Suboptimal solutions are obtained with incomplete gate libraries. In contrast past polynomial time techniques for gate resizing were either based on heuristics or based on much slower iterative exact algorithms. Simulation results on ISCAS85 benchmark circuits demonstrate 2.1%-54.1% power reduction based on the proposed buffer-redistribution based low-power gate resizing. Power savings from 0%-44.13% are demonstrated over the same circuits mapped for minimum area. The time required for resizing varies from 2.77s-1256.76s.","PeriodicalId":358015,"journal":{"name":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low power gate resizing of combinational circuits by buffer-redistribution\",\"authors\":\"V. Sundararajan, K. Parhi\",\"doi\":\"10.1109/ARVLSI.1999.756047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low power gate resizing can decrease the power dissipated in a technology mapped circuit while maintaining its critical path. Gate resizing operates as a post-mapping technique for power reduction by replacing some gates, which are faster than necessary, with smaller and slower gates from the underlying gate library. In this paper we propose a new transformation technique for combinational circuits referred to as buffer-redistribution. Buffer-redistribution is then used to model and solve the low-power discrete gate resizing problem in an exact manner in polynomial time and in a noniterative fashion for a complete gate library. Suboptimal solutions are obtained with incomplete gate libraries. In contrast past polynomial time techniques for gate resizing were either based on heuristics or based on much slower iterative exact algorithms. Simulation results on ISCAS85 benchmark circuits demonstrate 2.1%-54.1% power reduction based on the proposed buffer-redistribution based low-power gate resizing. Power savings from 0%-44.13% are demonstrated over the same circuits mapped for minimum area. The time required for resizing varies from 2.77s-1256.76s.\",\"PeriodicalId\":358015,\"journal\":{\"name\":\"Proceedings 20th Anniversary Conference on Advanced Research in VLSI\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 20th Anniversary Conference on Advanced Research in VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARVLSI.1999.756047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARVLSI.1999.756047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

低功率栅极调整尺寸可以降低技术映射电路的功耗,同时保持其关键路径。栅极调整作为一种后映射技术,通过从底层栅极库中使用更小、更慢的栅极来替换一些比必要更快的栅极,从而降低功耗。本文提出了一种新的组合电路转换技术,称为缓冲重分配。然后使用缓冲重分配以多项式时间和非迭代方式精确地模拟和解决低功耗离散栅极调整问题。在不完全门库下得到次优解。相比之下,过去的多项式时间门调整技术要么基于启发式,要么基于慢得多的迭代精确算法。在ISCAS85基准电路上的仿真结果表明,基于所提出的基于缓冲再分配的低功耗栅极调整可以降低2.1%-54.1%的功耗。在相同的电路中,以最小的面积绘制,功率节省为0%-44.13%。调整大小所需的时间从2.77s-1256.76s不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low power gate resizing of combinational circuits by buffer-redistribution
Low power gate resizing can decrease the power dissipated in a technology mapped circuit while maintaining its critical path. Gate resizing operates as a post-mapping technique for power reduction by replacing some gates, which are faster than necessary, with smaller and slower gates from the underlying gate library. In this paper we propose a new transformation technique for combinational circuits referred to as buffer-redistribution. Buffer-redistribution is then used to model and solve the low-power discrete gate resizing problem in an exact manner in polynomial time and in a noniterative fashion for a complete gate library. Suboptimal solutions are obtained with incomplete gate libraries. In contrast past polynomial time techniques for gate resizing were either based on heuristics or based on much slower iterative exact algorithms. Simulation results on ISCAS85 benchmark circuits demonstrate 2.1%-54.1% power reduction based on the proposed buffer-redistribution based low-power gate resizing. Power savings from 0%-44.13% are demonstrated over the same circuits mapped for minimum area. The time required for resizing varies from 2.77s-1256.76s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信