Anthony L. Gunderman, Milad Azizkhani, Saikat Sengupta, K. Cleary, Yue Chen
{"title":"开源磁流变安全气动径向流入电机和编码器(PRIME):设计和制造指南*","authors":"Anthony L. Gunderman, Milad Azizkhani, Saikat Sengupta, K. Cleary, Yue Chen","doi":"10.1109/ISMR57123.2023.10130240","DOIUrl":null,"url":null,"abstract":"Actuators and encoders used in MR-guided robotic interventions are subject to strict requirements to ensure patient safety and MR imaging quality. In this paper, we present an open source computer aided design (CAD) of our MR-safe Pneumatic Radial Inflow Motor and Encoder (PRIME). PRIME is a parametrically designed motor that enables scalability based on torque and speed requirements for a wide range of MR-guided robotic procedures. The design consists of five primary modifiable parameters that define the entire motor geometry. All components of the motor are either 3D printed or available off-the-shelf. Quadrature encoding is achieved using a 3D printed housing and four fiber optic cables. Benchtop experiments were performed to validate the performance of the proposed design. To the best of our knowledge, this is the first open source MR-safe pneumatic motor and encoder in the field. We aim to share the design and manufacturing guidelines to lower the entry barriers for researchers interested in MR-guided robotics.","PeriodicalId":276757,"journal":{"name":"2023 International Symposium on Medical Robotics (ISMR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Open Source MR-Safe Pneumatic Radial Inflow Motor and Encoder (PRIME): Design and Manufacturing Guidelines*\",\"authors\":\"Anthony L. Gunderman, Milad Azizkhani, Saikat Sengupta, K. Cleary, Yue Chen\",\"doi\":\"10.1109/ISMR57123.2023.10130240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Actuators and encoders used in MR-guided robotic interventions are subject to strict requirements to ensure patient safety and MR imaging quality. In this paper, we present an open source computer aided design (CAD) of our MR-safe Pneumatic Radial Inflow Motor and Encoder (PRIME). PRIME is a parametrically designed motor that enables scalability based on torque and speed requirements for a wide range of MR-guided robotic procedures. The design consists of five primary modifiable parameters that define the entire motor geometry. All components of the motor are either 3D printed or available off-the-shelf. Quadrature encoding is achieved using a 3D printed housing and four fiber optic cables. Benchtop experiments were performed to validate the performance of the proposed design. To the best of our knowledge, this is the first open source MR-safe pneumatic motor and encoder in the field. We aim to share the design and manufacturing guidelines to lower the entry barriers for researchers interested in MR-guided robotics.\",\"PeriodicalId\":276757,\"journal\":{\"name\":\"2023 International Symposium on Medical Robotics (ISMR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Symposium on Medical Robotics (ISMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMR57123.2023.10130240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Symposium on Medical Robotics (ISMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMR57123.2023.10130240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Open Source MR-Safe Pneumatic Radial Inflow Motor and Encoder (PRIME): Design and Manufacturing Guidelines*
Actuators and encoders used in MR-guided robotic interventions are subject to strict requirements to ensure patient safety and MR imaging quality. In this paper, we present an open source computer aided design (CAD) of our MR-safe Pneumatic Radial Inflow Motor and Encoder (PRIME). PRIME is a parametrically designed motor that enables scalability based on torque and speed requirements for a wide range of MR-guided robotic procedures. The design consists of five primary modifiable parameters that define the entire motor geometry. All components of the motor are either 3D printed or available off-the-shelf. Quadrature encoding is achieved using a 3D printed housing and four fiber optic cables. Benchtop experiments were performed to validate the performance of the proposed design. To the best of our knowledge, this is the first open source MR-safe pneumatic motor and encoder in the field. We aim to share the design and manufacturing guidelines to lower the entry barriers for researchers interested in MR-guided robotics.