基于单目视觉的道路标志识别,用于驾驶员辅助和安全

Mohak Sukhwani, Suriya Singh, Anirudh Goyal, Aseem Behl, Pritish Mohapatra, B. Bharti, C. V. Jawahar
{"title":"基于单目视觉的道路标志识别,用于驾驶员辅助和安全","authors":"Mohak Sukhwani, Suriya Singh, Anirudh Goyal, Aseem Behl, Pritish Mohapatra, B. Bharti, C. V. Jawahar","doi":"10.1109/ICVES.2014.7063716","DOIUrl":null,"url":null,"abstract":"In this paper, we present a solution to generate semantically richer descriptions and instructions for driver assistance and safety. Our solution builds upon a set of computer vision and machine learning modules. We start with low-level image processing and finally generate high-level descriptions. We do this by combining the results of the image pattern recognition module with the prior knowledge on traffic rules and larger context present in the video sequence. For recognition of road markings, we use a SVM based classifier and HOG based classifier. We test our method on real data captured in urban settings, and report impressive performance. Qualitative and quantitative performance of various modules are presented.","PeriodicalId":248904,"journal":{"name":"2014 IEEE International Conference on Vehicular Electronics and Safety","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Monocular vision based road marking recognition for driver assistance and safety\",\"authors\":\"Mohak Sukhwani, Suriya Singh, Anirudh Goyal, Aseem Behl, Pritish Mohapatra, B. Bharti, C. V. Jawahar\",\"doi\":\"10.1109/ICVES.2014.7063716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a solution to generate semantically richer descriptions and instructions for driver assistance and safety. Our solution builds upon a set of computer vision and machine learning modules. We start with low-level image processing and finally generate high-level descriptions. We do this by combining the results of the image pattern recognition module with the prior knowledge on traffic rules and larger context present in the video sequence. For recognition of road markings, we use a SVM based classifier and HOG based classifier. We test our method on real data captured in urban settings, and report impressive performance. Qualitative and quantitative performance of various modules are presented.\",\"PeriodicalId\":248904,\"journal\":{\"name\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2014.7063716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2014.7063716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种解决方案来生成语义上更丰富的驾驶员辅助和安全描述和指令。我们的解决方案建立在一套计算机视觉和机器学习模块之上。我们从低级的图像处理开始,最后生成高级的描述。我们通过将图像模式识别模块的结果与视频序列中存在的交通规则和更大上下文的先验知识相结合来实现这一点。对于道路标记的识别,我们使用了基于SVM的分类器和基于HOG的分类器。我们在城市环境中捕获的真实数据上测试了我们的方法,并报告了令人印象深刻的性能。介绍了各模块的定性和定量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular vision based road marking recognition for driver assistance and safety
In this paper, we present a solution to generate semantically richer descriptions and instructions for driver assistance and safety. Our solution builds upon a set of computer vision and machine learning modules. We start with low-level image processing and finally generate high-level descriptions. We do this by combining the results of the image pattern recognition module with the prior knowledge on traffic rules and larger context present in the video sequence. For recognition of road markings, we use a SVM based classifier and HOG based classifier. We test our method on real data captured in urban settings, and report impressive performance. Qualitative and quantitative performance of various modules are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信