利用遗传算法增强测试数据进行处罚预测

Chunyan Xia, Xingya Wang, Yan Zhang, Hao Yang
{"title":"利用遗传算法增强测试数据进行处罚预测","authors":"Chunyan Xia, Xingya Wang, Yan Zhang, Hao Yang","doi":"10.23940/ijpe.20.07.p10.10781086","DOIUrl":null,"url":null,"abstract":"With the development of smart court construction, a deep learning method has been introduced into the field of penalty prediction based on judicial text. Since the increasing parameters of the penalty prediction model, the size of the data set to test the performance of the model is gradually expanding. First, we use the data augmentation method to make some changes to the original data to obtain a large number of augmented data with the same label. Then, we use the multi-objective genetic algorithm to search for high-quality test data from a large number of augmented data, so as to improve the diversity of augmented data. Finally, we perform experiments. The results of actual judicial cases show that compared with the random method, augmented test data based on the genetic algorithm can better test the performance of the penalty prediction model.","PeriodicalId":262007,"journal":{"name":"Int. J. Perform. Eng.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using Genetic Algorithm to Augment Test Data for Penalty Prediction\",\"authors\":\"Chunyan Xia, Xingya Wang, Yan Zhang, Hao Yang\",\"doi\":\"10.23940/ijpe.20.07.p10.10781086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of smart court construction, a deep learning method has been introduced into the field of penalty prediction based on judicial text. Since the increasing parameters of the penalty prediction model, the size of the data set to test the performance of the model is gradually expanding. First, we use the data augmentation method to make some changes to the original data to obtain a large number of augmented data with the same label. Then, we use the multi-objective genetic algorithm to search for high-quality test data from a large number of augmented data, so as to improve the diversity of augmented data. Finally, we perform experiments. The results of actual judicial cases show that compared with the random method, augmented test data based on the genetic algorithm can better test the performance of the penalty prediction model.\",\"PeriodicalId\":262007,\"journal\":{\"name\":\"Int. J. Perform. Eng.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Perform. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23940/ijpe.20.07.p10.10781086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Perform. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23940/ijpe.20.07.p10.10781086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着智能法院建设的发展,基于司法文本的刑罚预测领域引入了一种深度学习方法。由于惩罚预测模型参数的不断增加,用于测试模型性能的数据集的规模也在逐渐扩大。首先,我们使用数据增强方法对原始数据进行一些修改,得到大量具有相同标签的增强数据。然后,利用多目标遗传算法从大量增强数据中搜索出高质量的测试数据,从而提高增强数据的多样性。最后,我们进行了实验。实际司法案例结果表明,与随机方法相比,基于遗传算法的增广试验数据能更好地检验刑罚预测模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Genetic Algorithm to Augment Test Data for Penalty Prediction
With the development of smart court construction, a deep learning method has been introduced into the field of penalty prediction based on judicial text. Since the increasing parameters of the penalty prediction model, the size of the data set to test the performance of the model is gradually expanding. First, we use the data augmentation method to make some changes to the original data to obtain a large number of augmented data with the same label. Then, we use the multi-objective genetic algorithm to search for high-quality test data from a large number of augmented data, so as to improve the diversity of augmented data. Finally, we perform experiments. The results of actual judicial cases show that compared with the random method, augmented test data based on the genetic algorithm can better test the performance of the penalty prediction model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信