{"title":"fpga中精确估计路由延迟的经验模型","authors":"T. Karnik, S. Kang","doi":"10.1109/ICCAD.1995.480136","DOIUrl":null,"url":null,"abstract":"We present an empirical routing delay model for estimating interconnection delays in FPGAs. We assume that the routing delay is a function of interPLC distances, circuit size, fanout of the net and routing congestion in the channel. We performed extensive simulations of various circuits to generate a sufficiently large dataset. Our method estimates delays by reading the average value tables and interpolating the values, if necessary. We present a rigorous statistical justification of this delay model. Our results show that our method predicts the delays within 20% of actual and it far outperforms all other existing techniques.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"An empirical model for accurate estimation of routing delay in FPGAs\",\"authors\":\"T. Karnik, S. Kang\",\"doi\":\"10.1109/ICCAD.1995.480136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an empirical routing delay model for estimating interconnection delays in FPGAs. We assume that the routing delay is a function of interPLC distances, circuit size, fanout of the net and routing congestion in the channel. We performed extensive simulations of various circuits to generate a sufficiently large dataset. Our method estimates delays by reading the average value tables and interpolating the values, if necessary. We present a rigorous statistical justification of this delay model. Our results show that our method predicts the delays within 20% of actual and it far outperforms all other existing techniques.\",\"PeriodicalId\":367501,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1995.480136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.480136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An empirical model for accurate estimation of routing delay in FPGAs
We present an empirical routing delay model for estimating interconnection delays in FPGAs. We assume that the routing delay is a function of interPLC distances, circuit size, fanout of the net and routing congestion in the channel. We performed extensive simulations of various circuits to generate a sufficiently large dataset. Our method estimates delays by reading the average value tables and interpolating the values, if necessary. We present a rigorous statistical justification of this delay model. Our results show that our method predicts the delays within 20% of actual and it far outperforms all other existing techniques.