工艺变化下的电压分束

V. Zolotov, C. Visweswariah, Jinjun Xiong
{"title":"工艺变化下的电压分束","authors":"V. Zolotov, C. Visweswariah, Jinjun Xiong","doi":"10.1145/1687399.1687480","DOIUrl":null,"url":null,"abstract":"Process variation is recognized as a major source of parametric yield loss, which occurs because a fraction of manufactured chips do not satisfy timing or power constraints. On the other hand, both chip performance and chip leakage power depend on supply voltage. This dependence can be used for converting the fraction of too slow or too leaky chips into good ones by adjusting their supply voltage. This technique is called voltage binning. All the manufactured chips are divided into groups (bins) and each group is assigned its individual supply voltage. This paper proposes a statistical technique of yield computation for different voltage binning schemes using results of statistical timing and variational power analysis. The paper formulates and solves the problem of computing optimal supply voltages for a given binning scheme.","PeriodicalId":256358,"journal":{"name":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Voltage binning under process variation\",\"authors\":\"V. Zolotov, C. Visweswariah, Jinjun Xiong\",\"doi\":\"10.1145/1687399.1687480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process variation is recognized as a major source of parametric yield loss, which occurs because a fraction of manufactured chips do not satisfy timing or power constraints. On the other hand, both chip performance and chip leakage power depend on supply voltage. This dependence can be used for converting the fraction of too slow or too leaky chips into good ones by adjusting their supply voltage. This technique is called voltage binning. All the manufactured chips are divided into groups (bins) and each group is assigned its individual supply voltage. This paper proposes a statistical technique of yield computation for different voltage binning schemes using results of statistical timing and variational power analysis. The paper formulates and solves the problem of computing optimal supply voltages for a given binning scheme.\",\"PeriodicalId\":256358,\"journal\":{\"name\":\"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1687399.1687480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1687399.1687480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

工艺变化被认为是参数良率损失的主要来源,这是因为一小部分制造的芯片不满足时间或功率限制。另一方面,芯片性能和芯片泄漏功率都取决于电源电压。这种依赖关系可用于通过调整其电源电压将太慢或太漏的芯片转换成良好的芯片。这种技术被称为电压分闸。所有制造的芯片被分成组(箱),每组被分配其单独的电源电压。本文利用统计时序和变分功率分析的结果,提出了一种计算不同电压分组方案的产量的统计方法。提出并解决了给定分组方案的最优供电电压的计算问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage binning under process variation
Process variation is recognized as a major source of parametric yield loss, which occurs because a fraction of manufactured chips do not satisfy timing or power constraints. On the other hand, both chip performance and chip leakage power depend on supply voltage. This dependence can be used for converting the fraction of too slow or too leaky chips into good ones by adjusting their supply voltage. This technique is called voltage binning. All the manufactured chips are divided into groups (bins) and each group is assigned its individual supply voltage. This paper proposes a statistical technique of yield computation for different voltage binning schemes using results of statistical timing and variational power analysis. The paper formulates and solves the problem of computing optimal supply voltages for a given binning scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信