{"title":"纤维定向复合柔韧机织物细观力学计算模型","authors":"A. Tabiei, I. Ivanov","doi":"10.1115/imece2001/ad-23779","DOIUrl":null,"url":null,"abstract":"\n This work presents a computational material model of flexible woven fabric for finite element impact analysis and simulation. The model is implemented in the nonlinear dynamic explicit finite element code LSDYNA. The material model derivation utilizes the micro-mechanical approach and the homogenization technique usually used in composite material models. The model accounts for reorientation of the yarns and the fabric architecture. The behavior of the flexible fabric material is achieved by discounting the shear moduli of the material in free state, which allows the simulation of the trellis mechanism before packing the yams. The material model is implemented into the LSDYNA code as a user defined material subroutine. The developed model and its implementation is validated using an experimental ballistic test on Kevlar® woven fabric. The presented validation shows good agreement between the simulation utilizing the present material model and the experiment.","PeriodicalId":136170,"journal":{"name":"Contemporary Research in Engineering Mechanics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Micro-Mechanical Model of Composite and Flexible Woven Fabric With Fiber Reorientation\",\"authors\":\"A. Tabiei, I. Ivanov\",\"doi\":\"10.1115/imece2001/ad-23779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work presents a computational material model of flexible woven fabric for finite element impact analysis and simulation. The model is implemented in the nonlinear dynamic explicit finite element code LSDYNA. The material model derivation utilizes the micro-mechanical approach and the homogenization technique usually used in composite material models. The model accounts for reorientation of the yarns and the fabric architecture. The behavior of the flexible fabric material is achieved by discounting the shear moduli of the material in free state, which allows the simulation of the trellis mechanism before packing the yams. The material model is implemented into the LSDYNA code as a user defined material subroutine. The developed model and its implementation is validated using an experimental ballistic test on Kevlar® woven fabric. The presented validation shows good agreement between the simulation utilizing the present material model and the experiment.\",\"PeriodicalId\":136170,\"journal\":{\"name\":\"Contemporary Research in Engineering Mechanics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Research in Engineering Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/ad-23779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Research in Engineering Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/ad-23779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Micro-Mechanical Model of Composite and Flexible Woven Fabric With Fiber Reorientation
This work presents a computational material model of flexible woven fabric for finite element impact analysis and simulation. The model is implemented in the nonlinear dynamic explicit finite element code LSDYNA. The material model derivation utilizes the micro-mechanical approach and the homogenization technique usually used in composite material models. The model accounts for reorientation of the yarns and the fabric architecture. The behavior of the flexible fabric material is achieved by discounting the shear moduli of the material in free state, which allows the simulation of the trellis mechanism before packing the yams. The material model is implemented into the LSDYNA code as a user defined material subroutine. The developed model and its implementation is validated using an experimental ballistic test on Kevlar® woven fabric. The presented validation shows good agreement between the simulation utilizing the present material model and the experiment.