旋转速度对光刻胶薄膜性能和极紫外光刻性能的影响

Yinjie Cen, Choong-Sun Lee, Li Cui, S. Coley, J. Park, Benjamin D. Naab-Rafael, E. Aqad, Rochelle Rena, Tyler R Paul, Thomas Penniman, Jason Behnke, Julia T Early, Benjamin Foltz
{"title":"旋转速度对光刻胶薄膜性能和极紫外光刻性能的影响","authors":"Yinjie Cen, Choong-Sun Lee, Li Cui, S. Coley, J. Park, Benjamin D. Naab-Rafael, E. Aqad, Rochelle Rena, Tyler R Paul, Thomas Penniman, Jason Behnke, Julia T Early, Benjamin Foltz","doi":"10.1117/12.2659101","DOIUrl":null,"url":null,"abstract":"Chemically amplified resist (CAR) materials are widely used in advanced node patterning by extreme ultraviolet lithography (EUVL). To support the continuous requirement of reducing critical dimension (CD), CAR has been designed to process at tens of nanometer coating thickness while taking into consideration film roughness, aspect ratio, and etch transfer challenge. In this study, we investigated the impact of the photoresist’s different spin speed for same film thickness on resolution, line width roughness, and sensitivity (RLS) trade-off for Line and Space (L/S) patterns. We selected photoresists with identical chemical composition that differed only in total wt solid% in the solution. Photoresist films at constant thickness were investigated for the spin speed impacts on photoresist film density, hydrophobicity on the film surface, and film surface roughness. The corresponding EUV lithographic performance will be presented.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin speed impact on photoresist thin film properties and EUV lithographic performance\",\"authors\":\"Yinjie Cen, Choong-Sun Lee, Li Cui, S. Coley, J. Park, Benjamin D. Naab-Rafael, E. Aqad, Rochelle Rena, Tyler R Paul, Thomas Penniman, Jason Behnke, Julia T Early, Benjamin Foltz\",\"doi\":\"10.1117/12.2659101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemically amplified resist (CAR) materials are widely used in advanced node patterning by extreme ultraviolet lithography (EUVL). To support the continuous requirement of reducing critical dimension (CD), CAR has been designed to process at tens of nanometer coating thickness while taking into consideration film roughness, aspect ratio, and etch transfer challenge. In this study, we investigated the impact of the photoresist’s different spin speed for same film thickness on resolution, line width roughness, and sensitivity (RLS) trade-off for Line and Space (L/S) patterns. We selected photoresists with identical chemical composition that differed only in total wt solid% in the solution. Photoresist films at constant thickness were investigated for the spin speed impacts on photoresist film density, hydrophobicity on the film surface, and film surface roughness. The corresponding EUV lithographic performance will be presented.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2659101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2659101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学放大抗蚀剂(CAR)材料广泛应用于极紫外光刻(EUVL)先进节点图片化。为了支持降低临界尺寸(CD)的持续要求,CAR被设计为在考虑薄膜粗糙度、长宽比和蚀刻转移挑战的情况下,以数十纳米的涂层厚度进行加工。在这项研究中,我们研究了相同薄膜厚度下光刻胶的不同旋转速度对线和空间(L/S)图案的分辨率、线宽粗糙度和灵敏度(RLS)权衡的影响。我们选择了化学成分相同的光抗胶剂,不同的只是溶液中的总固体百分比。研究了恒定厚度下光刻胶膜的旋转速度对光刻胶膜密度、膜表面疏水性和膜表面粗糙度的影响。将介绍相应的极紫外光刻性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin speed impact on photoresist thin film properties and EUV lithographic performance
Chemically amplified resist (CAR) materials are widely used in advanced node patterning by extreme ultraviolet lithography (EUVL). To support the continuous requirement of reducing critical dimension (CD), CAR has been designed to process at tens of nanometer coating thickness while taking into consideration film roughness, aspect ratio, and etch transfer challenge. In this study, we investigated the impact of the photoresist’s different spin speed for same film thickness on resolution, line width roughness, and sensitivity (RLS) trade-off for Line and Space (L/S) patterns. We selected photoresists with identical chemical composition that differed only in total wt solid% in the solution. Photoresist films at constant thickness were investigated for the spin speed impacts on photoresist film density, hydrophobicity on the film surface, and film surface roughness. The corresponding EUV lithographic performance will be presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信