利用遗传算法辅助数据流覆盖测试数据生成

Ahmed S. Ghiduk, M. J. Harrold, M. Girgis
{"title":"利用遗传算法辅助数据流覆盖测试数据生成","authors":"Ahmed S. Ghiduk, M. J. Harrold, M. Girgis","doi":"10.1109/APSEC.2007.100","DOIUrl":null,"url":null,"abstract":"This paper presents an automatic test-data generation technique that uses a genetic algorithm (GA) to generate test data that satisfy data-flow coverage criteria. The technique applies the concepts of dominance relations between nodes to define a new multi-objective fitness function to evaluate the generated test data. The paper also presents the results of a set of empirical studies conducted on a set of programs that evaluate the effectiveness of our technique compared to the random-testing technique. The studies show the effective of our technique in achieving coverage of the test requirements, and in reducing the size of test suites, the search time, and the number of iterations required to satisfy the data-flow criteria.","PeriodicalId":273688,"journal":{"name":"14th Asia-Pacific Software Engineering Conference (APSEC'07)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Using Genetic Algorithms to Aid Test-Data Generation for Data-Flow Coverage\",\"authors\":\"Ahmed S. Ghiduk, M. J. Harrold, M. Girgis\",\"doi\":\"10.1109/APSEC.2007.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an automatic test-data generation technique that uses a genetic algorithm (GA) to generate test data that satisfy data-flow coverage criteria. The technique applies the concepts of dominance relations between nodes to define a new multi-objective fitness function to evaluate the generated test data. The paper also presents the results of a set of empirical studies conducted on a set of programs that evaluate the effectiveness of our technique compared to the random-testing technique. The studies show the effective of our technique in achieving coverage of the test requirements, and in reducing the size of test suites, the search time, and the number of iterations required to satisfy the data-flow criteria.\",\"PeriodicalId\":273688,\"journal\":{\"name\":\"14th Asia-Pacific Software Engineering Conference (APSEC'07)\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th Asia-Pacific Software Engineering Conference (APSEC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC.2007.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th Asia-Pacific Software Engineering Conference (APSEC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2007.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

本文提出了一种自动测试数据生成技术,该技术使用遗传算法生成满足数据流覆盖标准的测试数据。该技术应用节点间优势关系的概念定义了一个新的多目标适应度函数来评估生成的测试数据。本文还介绍了对一组程序进行的一系列实证研究的结果,这些程序与随机测试技术相比,评估了我们的技术的有效性。这些研究显示了我们的技术在实现测试需求的覆盖、减少测试套件的大小、搜索时间和满足数据流标准所需的迭代次数方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Genetic Algorithms to Aid Test-Data Generation for Data-Flow Coverage
This paper presents an automatic test-data generation technique that uses a genetic algorithm (GA) to generate test data that satisfy data-flow coverage criteria. The technique applies the concepts of dominance relations between nodes to define a new multi-objective fitness function to evaluate the generated test data. The paper also presents the results of a set of empirical studies conducted on a set of programs that evaluate the effectiveness of our technique compared to the random-testing technique. The studies show the effective of our technique in achieving coverage of the test requirements, and in reducing the size of test suites, the search time, and the number of iterations required to satisfy the data-flow criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信