不同形状的In(Ga)As/GaAs量子点模拟TEM图像数据库研究

T. Koprucki, Anieza Maltsi, T. Niermann, T. Streckenbach, K. Tabelow, J. Polzehl
{"title":"不同形状的In(Ga)As/GaAs量子点模拟TEM图像数据库研究","authors":"T. Koprucki, Anieza Maltsi, T. Niermann, T. Streckenbach, K. Tabelow, J. Polzehl","doi":"10.1109/NUSOD.2019.8807025","DOIUrl":null,"url":null,"abstract":"We present a database of simulated transmission electron microscopy (TEM) images for In(Ga)As quantum dots (QDs) embedded in bulk-like GaAs samples. The database contains series of TEM images for QDs with various shapes, e.g. pyramidal and lens-shaped, depending on the size and indium concentration as well as on the excitation conditions of the electron beam. This database is a key element of a novel concept for model-based geometry reconstruction (MBGR) of semiconductor QDs from TEM imaging and can be used to establish a statistical procedure for the estimation of QD properties and classification of QD types based on machine learning techniques.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a Database of Simulated TEM Images for In(Ga)As/GaAs Quantum Dots with Various Shape\",\"authors\":\"T. Koprucki, Anieza Maltsi, T. Niermann, T. Streckenbach, K. Tabelow, J. Polzehl\",\"doi\":\"10.1109/NUSOD.2019.8807025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a database of simulated transmission electron microscopy (TEM) images for In(Ga)As quantum dots (QDs) embedded in bulk-like GaAs samples. The database contains series of TEM images for QDs with various shapes, e.g. pyramidal and lens-shaped, depending on the size and indium concentration as well as on the excitation conditions of the electron beam. This database is a key element of a novel concept for model-based geometry reconstruction (MBGR) of semiconductor QDs from TEM imaging and can be used to establish a statistical procedure for the estimation of QD properties and classification of QD types based on machine learning techniques.\",\"PeriodicalId\":369769,\"journal\":{\"name\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2019.8807025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8807025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了嵌入在块状GaAs样品中的In(Ga)As量子点(QDs)的模拟透射电子显微镜(TEM)图像数据库。该数据库包含一系列不同形状的量子点的TEM图像,如锥体形和透镜形,这取决于尺寸和铟浓度以及电子束的激发条件。该数据库是TEM成像半导体量子点基于模型的几何重建(MBGR)新概念的关键元素,可用于建立基于机器学习技术的量子点属性估计和量子点类型分类的统计程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Database of Simulated TEM Images for In(Ga)As/GaAs Quantum Dots with Various Shape
We present a database of simulated transmission electron microscopy (TEM) images for In(Ga)As quantum dots (QDs) embedded in bulk-like GaAs samples. The database contains series of TEM images for QDs with various shapes, e.g. pyramidal and lens-shaped, depending on the size and indium concentration as well as on the excitation conditions of the electron beam. This database is a key element of a novel concept for model-based geometry reconstruction (MBGR) of semiconductor QDs from TEM imaging and can be used to establish a statistical procedure for the estimation of QD properties and classification of QD types based on machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信