基于立体视觉产生的点云对目标进行精确定位

Mo Yuda, Zou Xiangjun, Situ Weiming, Luo Shaofeng
{"title":"基于立体视觉产生的点云对目标进行精确定位","authors":"Mo Yuda, Zou Xiangjun, Situ Weiming, Luo Shaofeng","doi":"10.1109/M2VIP.2016.7827268","DOIUrl":null,"url":null,"abstract":"To solve the problem of workpiece target accurate positioning in industrial environment, we proposed a method that used object's surface point cloud which created by stereo matching of binocular vision. Firstly, found out the ROI(Region Of Interest) of the stereo matching point cloud by template matching, and used an algorithm of noise reduction to gain a clean ROI point cloud. And then, extracted the perfect point cloud of object's surface from object's 3d-model, and used improved iterative closest point algorithm to do point cloud registration that can gain the accurate pose of object. Experiment shows that positioning accuracy is less than 1.5 mm(Euclidean Distance) which can meet the needs of industrial robot doing sorting or accurate grabing.","PeriodicalId":125468,"journal":{"name":"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Target accurate positioning based on the point cloud created by stereo vision\",\"authors\":\"Mo Yuda, Zou Xiangjun, Situ Weiming, Luo Shaofeng\",\"doi\":\"10.1109/M2VIP.2016.7827268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of workpiece target accurate positioning in industrial environment, we proposed a method that used object's surface point cloud which created by stereo matching of binocular vision. Firstly, found out the ROI(Region Of Interest) of the stereo matching point cloud by template matching, and used an algorithm of noise reduction to gain a clean ROI point cloud. And then, extracted the perfect point cloud of object's surface from object's 3d-model, and used improved iterative closest point algorithm to do point cloud registration that can gain the accurate pose of object. Experiment shows that positioning accuracy is less than 1.5 mm(Euclidean Distance) which can meet the needs of industrial robot doing sorting or accurate grabing.\",\"PeriodicalId\":125468,\"journal\":{\"name\":\"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/M2VIP.2016.7827268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/M2VIP.2016.7827268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

针对工业环境下工件目标的精确定位问题,提出了一种利用双目视觉立体匹配产生的物体表面点云的定位方法。首先,通过模板匹配找出立体匹配点云的感兴趣区域(ROI),并采用降噪算法得到干净的感兴趣点云;然后,从物体的三维模型中提取出物体表面的完美点云,并使用改进的迭代最近点算法进行点云配准,获得物体的精确位姿。实验表明,定位精度小于1.5 mm(欧氏距离),可以满足工业机器人进行分拣或精确抓取的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target accurate positioning based on the point cloud created by stereo vision
To solve the problem of workpiece target accurate positioning in industrial environment, we proposed a method that used object's surface point cloud which created by stereo matching of binocular vision. Firstly, found out the ROI(Region Of Interest) of the stereo matching point cloud by template matching, and used an algorithm of noise reduction to gain a clean ROI point cloud. And then, extracted the perfect point cloud of object's surface from object's 3d-model, and used improved iterative closest point algorithm to do point cloud registration that can gain the accurate pose of object. Experiment shows that positioning accuracy is less than 1.5 mm(Euclidean Distance) which can meet the needs of industrial robot doing sorting or accurate grabing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信