S. Ramadas, R. O’Leary, A. Mulholland, G. Hayward, A. Mackintosh, A. Trogé, R. Pethrick
{"title":"厚度型压电换能器中基于渐变匹配层的锥形传输线技术","authors":"S. Ramadas, R. O’Leary, A. Mulholland, G. Hayward, A. Mackintosh, A. Trogé, R. Pethrick","doi":"10.1109/ULTSYM.2009.5441463","DOIUrl":null,"url":null,"abstract":"Conventionally, in order to acoustically match thickness mode piezoelectric transducers to a low acoustic impedance load medium, multiple quarter wavelength (QW) matching layers are employed at the front face of the device. Typically a number of layers, 2–4 in number, are employed resulting in discrete impedance steps within the acoustic matching scheme. This can result in impedance matching with limited bandwidth characteristics. This paper investigates the application of tapered transmission line filter theory to implement a graded impedance profile, through the thickness of the matching layer scheme, to solve the impedance mismatch problem whilst accounting for enhanced transducer sensitivity and bandwidth.","PeriodicalId":368182,"journal":{"name":"2009 IEEE International Ultrasonics Symposium","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tapered transmission line technique based graded matching layers for thickness mode piezoelectric transducers\",\"authors\":\"S. Ramadas, R. O’Leary, A. Mulholland, G. Hayward, A. Mackintosh, A. Trogé, R. Pethrick\",\"doi\":\"10.1109/ULTSYM.2009.5441463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventionally, in order to acoustically match thickness mode piezoelectric transducers to a low acoustic impedance load medium, multiple quarter wavelength (QW) matching layers are employed at the front face of the device. Typically a number of layers, 2–4 in number, are employed resulting in discrete impedance steps within the acoustic matching scheme. This can result in impedance matching with limited bandwidth characteristics. This paper investigates the application of tapered transmission line filter theory to implement a graded impedance profile, through the thickness of the matching layer scheme, to solve the impedance mismatch problem whilst accounting for enhanced transducer sensitivity and bandwidth.\",\"PeriodicalId\":368182,\"journal\":{\"name\":\"2009 IEEE International Ultrasonics Symposium\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2009.5441463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2009.5441463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tapered transmission line technique based graded matching layers for thickness mode piezoelectric transducers
Conventionally, in order to acoustically match thickness mode piezoelectric transducers to a low acoustic impedance load medium, multiple quarter wavelength (QW) matching layers are employed at the front face of the device. Typically a number of layers, 2–4 in number, are employed resulting in discrete impedance steps within the acoustic matching scheme. This can result in impedance matching with limited bandwidth characteristics. This paper investigates the application of tapered transmission line filter theory to implement a graded impedance profile, through the thickness of the matching layer scheme, to solve the impedance mismatch problem whilst accounting for enhanced transducer sensitivity and bandwidth.