seq2seq——基于注意力的文本主题表示

Linjie Xia, Qiaoling Shen, Zicheng Wang, Yi Wang, Dewei Shu, Haipeng Li
{"title":"seq2seq——基于注意力的文本主题表示","authors":"Linjie Xia, Qiaoling Shen, Zicheng Wang, Yi Wang, Dewei Shu, Haipeng Li","doi":"10.1109/CISCE58541.2023.10142391","DOIUrl":null,"url":null,"abstract":"After the issue of keywords not effectively representing the theme in topic discovery tasks, this paper proposes a text topic representation method based on Seq2Seq-Attention, aiming to create a concise and refined topic representation. Firstly, the Encoder module uses a two-layer bidirectional recurrent neural network for text information feature extraction, the Decoder sub-module uses a two-layer unidirectional recurrent neural network and combines with an attention mechanism model to complete the decoding task and outputs the desired sequence of popular topic characters. Finally, the effectiveness of the method is verified through comparative experiments.","PeriodicalId":145263,"journal":{"name":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seq2Seq-Attention based text topic representation\",\"authors\":\"Linjie Xia, Qiaoling Shen, Zicheng Wang, Yi Wang, Dewei Shu, Haipeng Li\",\"doi\":\"10.1109/CISCE58541.2023.10142391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After the issue of keywords not effectively representing the theme in topic discovery tasks, this paper proposes a text topic representation method based on Seq2Seq-Attention, aiming to create a concise and refined topic representation. Firstly, the Encoder module uses a two-layer bidirectional recurrent neural network for text information feature extraction, the Decoder sub-module uses a two-layer unidirectional recurrent neural network and combines with an attention mechanism model to complete the decoding task and outputs the desired sequence of popular topic characters. Finally, the effectiveness of the method is verified through comparative experiments.\",\"PeriodicalId\":145263,\"journal\":{\"name\":\"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISCE58541.2023.10142391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE58541.2023.10142391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对主题发现任务中关键词不能有效表示主题的问题,本文提出了一种基于Seq2Seq-Attention的文本主题表示方法,旨在创建简洁精细化的主题表示。首先,Encoder模块采用两层双向递归神经网络进行文本信息特征提取,Decoder子模块采用两层单向递归神经网络结合注意机制模型完成解码任务,输出期望的热门话题字符序列。最后,通过对比实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seq2Seq-Attention based text topic representation
After the issue of keywords not effectively representing the theme in topic discovery tasks, this paper proposes a text topic representation method based on Seq2Seq-Attention, aiming to create a concise and refined topic representation. Firstly, the Encoder module uses a two-layer bidirectional recurrent neural network for text information feature extraction, the Decoder sub-module uses a two-layer unidirectional recurrent neural network and combines with an attention mechanism model to complete the decoding task and outputs the desired sequence of popular topic characters. Finally, the effectiveness of the method is verified through comparative experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信