Y. Horio, T. Hayashi, N. Kamimura, T. Tachibana, N. Tomita
{"title":"快速凝固技术制备(Bi,Sb)2(Te,Se)3热电模块在投影系统中的应用","authors":"Y. Horio, T. Hayashi, N. Kamimura, T. Tachibana, N. Tomita","doi":"10.1109/ICT.2006.331255","DOIUrl":null,"url":null,"abstract":"A thermoelectric generator system was developed to convert low grade waste heat from a bulb inside an optical projection system into electricity. A new type of thermoelectric module with (Bi,Sb)2(Te,Se)3 compounds and intended for consumer use was installed in the system. Bismuth-telluride-based thermoelectric compounds with fine grains and unidirectional crystal orientation prepared using a rapid solidification technique, exhibited high performance at temperatures ranging from 298 to 473 K. Thermoelectric properties were optimized by controlling the microstructure and oxygen content of the specimens. A maximum conversion efficiency of 5.7% was obtained from the developed thermoelectric module at a temperature differential of 150 K (Tc = 323 K, Th = 473 K). A thermoelectric power generating system using a new type of aluminum alloy reflector was developed and evaluated for the prototype projection system","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Thermoelectric Modules Fabricated with (Bi,Sb)2(Te,Se)3 using Rapid Solidification Technique for the Projector System\",\"authors\":\"Y. Horio, T. Hayashi, N. Kamimura, T. Tachibana, N. Tomita\",\"doi\":\"10.1109/ICT.2006.331255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thermoelectric generator system was developed to convert low grade waste heat from a bulb inside an optical projection system into electricity. A new type of thermoelectric module with (Bi,Sb)2(Te,Se)3 compounds and intended for consumer use was installed in the system. Bismuth-telluride-based thermoelectric compounds with fine grains and unidirectional crystal orientation prepared using a rapid solidification technique, exhibited high performance at temperatures ranging from 298 to 473 K. Thermoelectric properties were optimized by controlling the microstructure and oxygen content of the specimens. A maximum conversion efficiency of 5.7% was obtained from the developed thermoelectric module at a temperature differential of 150 K (Tc = 323 K, Th = 473 K). A thermoelectric power generating system using a new type of aluminum alloy reflector was developed and evaluated for the prototype projection system\",\"PeriodicalId\":346555,\"journal\":{\"name\":\"2006 25th International Conference on Thermoelectrics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th International Conference on Thermoelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2006.331255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Thermoelectric Modules Fabricated with (Bi,Sb)2(Te,Se)3 using Rapid Solidification Technique for the Projector System
A thermoelectric generator system was developed to convert low grade waste heat from a bulb inside an optical projection system into electricity. A new type of thermoelectric module with (Bi,Sb)2(Te,Se)3 compounds and intended for consumer use was installed in the system. Bismuth-telluride-based thermoelectric compounds with fine grains and unidirectional crystal orientation prepared using a rapid solidification technique, exhibited high performance at temperatures ranging from 298 to 473 K. Thermoelectric properties were optimized by controlling the microstructure and oxygen content of the specimens. A maximum conversion efficiency of 5.7% was obtained from the developed thermoelectric module at a temperature differential of 150 K (Tc = 323 K, Th = 473 K). A thermoelectric power generating system using a new type of aluminum alloy reflector was developed and evaluated for the prototype projection system