引入基于搜索度的任务分配的进化多任务优化

Yohei Hazama, H. Iima
{"title":"引入基于搜索度的任务分配的进化多任务优化","authors":"Yohei Hazama, H. Iima","doi":"10.1109/ICEET56468.2022.10007249","DOIUrl":null,"url":null,"abstract":"Multi-task optimization problems are to find solutions of multiple optimization problems simultaneously. Conventional evolutionary methods for the problems maintain a population for each task, and some offspring are generated by combining individuals in different tasks. The generated offspring are randomly assigned to tasks. However, the offspring may be assigned to inappropriate tasks. We propose a method that assigns them to appropriate tasks using a new criterion called search degree. The search degree represents how fast the solution search in each task progresses. The proposed method increases the probability of assigning the offspring to a task with a small search degree. Experimental results show the proposed method is superior.","PeriodicalId":241355,"journal":{"name":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Multi-task Optimization Introducing Task Assignment Based on a Search Degree\",\"authors\":\"Yohei Hazama, H. Iima\",\"doi\":\"10.1109/ICEET56468.2022.10007249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-task optimization problems are to find solutions of multiple optimization problems simultaneously. Conventional evolutionary methods for the problems maintain a population for each task, and some offspring are generated by combining individuals in different tasks. The generated offspring are randomly assigned to tasks. However, the offspring may be assigned to inappropriate tasks. We propose a method that assigns them to appropriate tasks using a new criterion called search degree. The search degree represents how fast the solution search in each task progresses. The proposed method increases the probability of assigning the offspring to a task with a small search degree. Experimental results show the proposed method is superior.\",\"PeriodicalId\":241355,\"journal\":{\"name\":\"2022 International Conference on Engineering and Emerging Technologies (ICEET)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Engineering and Emerging Technologies (ICEET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEET56468.2022.10007249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET56468.2022.10007249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多任务优化问题是指同时寻找多个优化问题的解。传统的问题进化方法为每个任务维持一个种群,并且一些后代是由不同任务中的个体组合产生的。生成的后代被随机分配到任务中。然而,后代可能被分配到不适当的任务。我们提出了一种方法,使用称为搜索度的新标准将它们分配到适当的任务。搜索度表示每个任务中解的搜索速度。该方法提高了将后代分配给小搜索度任务的概率。实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Multi-task Optimization Introducing Task Assignment Based on a Search Degree
Multi-task optimization problems are to find solutions of multiple optimization problems simultaneously. Conventional evolutionary methods for the problems maintain a population for each task, and some offspring are generated by combining individuals in different tasks. The generated offspring are randomly assigned to tasks. However, the offspring may be assigned to inappropriate tasks. We propose a method that assigns them to appropriate tasks using a new criterion called search degree. The search degree represents how fast the solution search in each task progresses. The proposed method increases the probability of assigning the offspring to a task with a small search degree. Experimental results show the proposed method is superior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信