大规模异构fpga的高效封装和分析安置

Yu-Chen Chen, Sheng-Yen Chen, Yao-Wen Chang
{"title":"大规模异构fpga的高效封装和分析安置","authors":"Yu-Chen Chen, Sheng-Yen Chen, Yao-Wen Chang","doi":"10.1109/ICCAD.2014.7001421","DOIUrl":null,"url":null,"abstract":"As FPGA architecture evolves, complex heterogenous blocks, such as RAMs and DSPs, are widely used to effectively implement various circuit applications. These complex blocks often consist of datapath-intensive circuits, which are not adequately addressed in existing packing and placement algorithms. Besides, scalability has become a first-order metric for modern FPGA design, mainly due to the dramatically increasing design complexity. This paper presents efficient and effective packing and analytical placement algorithms for large-scale heterogeneous FPGAs to deal with issues on heterogeneity, datapath regularity, and scalability. Compared to the well-known academic tool VPR, experimental results show that our packing and placement algorithms achieve respective 199.80X and 3.07X speedups with better wirelength, and our overall flow achieves 50% shorter wirelength, with an 18.30X overall speedup.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Efficient and effective packing and analytical placement for large-scale heterogeneous FPGAs\",\"authors\":\"Yu-Chen Chen, Sheng-Yen Chen, Yao-Wen Chang\",\"doi\":\"10.1109/ICCAD.2014.7001421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As FPGA architecture evolves, complex heterogenous blocks, such as RAMs and DSPs, are widely used to effectively implement various circuit applications. These complex blocks often consist of datapath-intensive circuits, which are not adequately addressed in existing packing and placement algorithms. Besides, scalability has become a first-order metric for modern FPGA design, mainly due to the dramatically increasing design complexity. This paper presents efficient and effective packing and analytical placement algorithms for large-scale heterogeneous FPGAs to deal with issues on heterogeneity, datapath regularity, and scalability. Compared to the well-known academic tool VPR, experimental results show that our packing and placement algorithms achieve respective 199.80X and 3.07X speedups with better wirelength, and our overall flow achieves 50% shorter wirelength, with an 18.30X overall speedup.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

随着FPGA体系结构的发展,ram和dsp等复杂异构块被广泛用于有效实现各种电路应用。这些复杂的块通常由数据路径密集电路组成,这在现有的封装和放置算法中没有得到充分的解决。此外,可扩展性已成为现代FPGA设计的一阶指标,这主要是由于设计复杂性的急剧增加。针对大规模异构fpga的异构性、数据路径规则性和可扩展性等问题,提出了高效的封装和分析布局算法。与著名的学术工具VPR相比,实验结果表明,我们的填充和放置算法在更好的带宽下分别实现了199.80X和3.07X的速度提升,并且我们的整体流量缩短了50%的带宽,整体速度提升了18.30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and effective packing and analytical placement for large-scale heterogeneous FPGAs
As FPGA architecture evolves, complex heterogenous blocks, such as RAMs and DSPs, are widely used to effectively implement various circuit applications. These complex blocks often consist of datapath-intensive circuits, which are not adequately addressed in existing packing and placement algorithms. Besides, scalability has become a first-order metric for modern FPGA design, mainly due to the dramatically increasing design complexity. This paper presents efficient and effective packing and analytical placement algorithms for large-scale heterogeneous FPGAs to deal with issues on heterogeneity, datapath regularity, and scalability. Compared to the well-known academic tool VPR, experimental results show that our packing and placement algorithms achieve respective 199.80X and 3.07X speedups with better wirelength, and our overall flow achieves 50% shorter wirelength, with an 18.30X overall speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信