Ping Huang, Jingxuan Lu, Delong Li, W. Song, W. Qu
{"title":"2012年北京特大暴雨事件遥感监测","authors":"Ping Huang, Jingxuan Lu, Delong Li, W. Song, W. Qu","doi":"10.1117/12.2204720","DOIUrl":null,"url":null,"abstract":"Satellite remote sensing with a larger spatial coverage and high temporal resolution makes it possible to monitor precipitation distribution under extreme rainfall events. In this paper, the heavy rainstorm that occurred in Beijing on 21, July in 2012 was monitored using the TRMM and Fengyun precipitation data. Results indicate that: (1) these two kinds of satellite precipitation data are in good agreement with ground observed precipitation data, having a correlation coefficient of 0.9390 and 0.9846 and an underestimation of 14.42% and 19.86% respectively; (2) The moving track of this extreme rainstorm can be well detected, with the storm center and a heavy rain belt moving from southwest to northeast found; (3) 15 minutes interval between the two satellite data makes them complement each other, which enables the temporal frequency of the monitoring data further increased so as to get construction of the rainstorm processes improved.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remote sensing monitoring of the 2012 Beijing extreme rainstorm event\",\"authors\":\"Ping Huang, Jingxuan Lu, Delong Li, W. Song, W. Qu\",\"doi\":\"10.1117/12.2204720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite remote sensing with a larger spatial coverage and high temporal resolution makes it possible to monitor precipitation distribution under extreme rainfall events. In this paper, the heavy rainstorm that occurred in Beijing on 21, July in 2012 was monitored using the TRMM and Fengyun precipitation data. Results indicate that: (1) these two kinds of satellite precipitation data are in good agreement with ground observed precipitation data, having a correlation coefficient of 0.9390 and 0.9846 and an underestimation of 14.42% and 19.86% respectively; (2) The moving track of this extreme rainstorm can be well detected, with the storm center and a heavy rain belt moving from southwest to northeast found; (3) 15 minutes interval between the two satellite data makes them complement each other, which enables the temporal frequency of the monitoring data further increased so as to get construction of the rainstorm processes improved.\",\"PeriodicalId\":340728,\"journal\":{\"name\":\"China Symposium on Remote Sensing\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Symposium on Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2204720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2204720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remote sensing monitoring of the 2012 Beijing extreme rainstorm event
Satellite remote sensing with a larger spatial coverage and high temporal resolution makes it possible to monitor precipitation distribution under extreme rainfall events. In this paper, the heavy rainstorm that occurred in Beijing on 21, July in 2012 was monitored using the TRMM and Fengyun precipitation data. Results indicate that: (1) these two kinds of satellite precipitation data are in good agreement with ground observed precipitation data, having a correlation coefficient of 0.9390 and 0.9846 and an underestimation of 14.42% and 19.86% respectively; (2) The moving track of this extreme rainstorm can be well detected, with the storm center and a heavy rain belt moving from southwest to northeast found; (3) 15 minutes interval between the two satellite data makes them complement each other, which enables the temporal frequency of the monitoring data further increased so as to get construction of the rainstorm processes improved.