混沌正弦映射分岔的通用常数研究

Qian Zhang, Yong Xiang, Z. Fan, Chuang Bi
{"title":"混沌正弦映射分岔的通用常数研究","authors":"Qian Zhang, Yong Xiang, Z. Fan, Chuang Bi","doi":"10.1109/ISCID.2013.158","DOIUrl":null,"url":null,"abstract":"The symmetry breaking bifurcation of a sine map is discussed when the control parameter in the sine map is chosen as a bifurcation parameter. Based on the sine map, the bifurcation points can be derived by the iterative map. Then, the stability of the system is enhanced by employing a cubic and a linear chaotic controller to exactly control the locations of the bifurcation points. Moreover, the universal constants of the chaotic system have been obtained by numerical simulation. The validity of the theoretical analysis is proved by the diagrams of bifurcation and Lyapunov exponent.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"4 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of Universal Constants of Bifurcation in a Chaotic Sine Map\",\"authors\":\"Qian Zhang, Yong Xiang, Z. Fan, Chuang Bi\",\"doi\":\"10.1109/ISCID.2013.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The symmetry breaking bifurcation of a sine map is discussed when the control parameter in the sine map is chosen as a bifurcation parameter. Based on the sine map, the bifurcation points can be derived by the iterative map. Then, the stability of the system is enhanced by employing a cubic and a linear chaotic controller to exactly control the locations of the bifurcation points. Moreover, the universal constants of the chaotic system have been obtained by numerical simulation. The validity of the theoretical analysis is proved by the diagrams of bifurcation and Lyapunov exponent.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"4 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

讨论了正弦映射中控制参数作为分岔参数时的对称破缺分岔问题。在正弦映射的基础上,通过迭代映射得到分岔点。然后,采用三次和线性混沌控制器精确控制分岔点的位置,增强了系统的稳定性。此外,通过数值模拟得到了混沌系统的通用常数。用分岔图和李亚普诺夫指数图证明了理论分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Universal Constants of Bifurcation in a Chaotic Sine Map
The symmetry breaking bifurcation of a sine map is discussed when the control parameter in the sine map is chosen as a bifurcation parameter. Based on the sine map, the bifurcation points can be derived by the iterative map. Then, the stability of the system is enhanced by employing a cubic and a linear chaotic controller to exactly control the locations of the bifurcation points. Moreover, the universal constants of the chaotic system have been obtained by numerical simulation. The validity of the theoretical analysis is proved by the diagrams of bifurcation and Lyapunov exponent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信