弹簧系统的模型简化

Qing Wang, Xiaolin Deng, Qingyang Wang
{"title":"弹簧系统的模型简化","authors":"Qing Wang, Xiaolin Deng, Qingyang Wang","doi":"10.1109/ICCA.2010.5524193","DOIUrl":null,"url":null,"abstract":"The H2 optimal model reduction problem is to obtain reduced order spring system with r springs to approximate the original spring system with n (r < n) springs such that the H2 norm of the error system is minimized. The expression of the error and its gradient are explicitly given in terms of the solutions of certain Lyapunov equations. An example is provided to illustrate the effectiveness of the proposed method.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model simplification of spring systems\",\"authors\":\"Qing Wang, Xiaolin Deng, Qingyang Wang\",\"doi\":\"10.1109/ICCA.2010.5524193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The H2 optimal model reduction problem is to obtain reduced order spring system with r springs to approximate the original spring system with n (r < n) springs such that the H2 norm of the error system is minimized. The expression of the error and its gradient are explicitly given in terms of the solutions of certain Lyapunov equations. An example is provided to illustrate the effectiveness of the proposed method.\",\"PeriodicalId\":155562,\"journal\":{\"name\":\"IEEE ICCA 2010\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ICCA 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2010.5524193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

H2最优模型约简问题是得到具有r个弹簧的降阶弹簧系统,以近似具有n (r < n)个弹簧的原弹簧系统,使误差系统的H2范数最小。用某些李雅普诺夫方程的解明确地给出了误差及其梯度的表达式。算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model simplification of spring systems
The H2 optimal model reduction problem is to obtain reduced order spring system with r springs to approximate the original spring system with n (r < n) springs such that the H2 norm of the error system is minimized. The expression of the error and its gradient are explicitly given in terms of the solutions of certain Lyapunov equations. An example is provided to illustrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信