对数Gabor小波和极大后验估计在说话人识别中的应用

S. Senapati, S. Chakroborty, G. Saha
{"title":"对数Gabor小波和极大后验估计在说话人识别中的应用","authors":"S. Senapati, S. Chakroborty, G. Saha","doi":"10.1109/INDCON.2006.302757","DOIUrl":null,"url":null,"abstract":"Speaker identification (SI) system needs an efficient feature extraction process and an appropriate speaker model developed from these features. The work introduces the fusion of log Gabor wavelet (LGW) and maximum a posteriori (MAP) estimator for robust text-independent SI system. The focus of this paper is on the robustness to degradations produced by transmission over a telephone channel. Complete experimental framework is conducted on 49 speakers, conversational telephone King-92 SI speech database with two well known speaker models i.e. Gaussian mixture model (GMM) and vector quantization (VQ). Comparisons are made with two different established methods as well as with normal feature extraction procedure to show the robustness of the new approach in different time segments. The GMM attains 98.8% of identification accuracy using 30 second of wide band speech utterances and 87.3% of identification accuracy using 30 second of narrow band speech utterances and is shown to outperform the other methods","PeriodicalId":122715,"journal":{"name":"2006 Annual IEEE India Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Log Gabor Wavelet and Maximum a Posteriori Estimator in Speaker Identification\",\"authors\":\"S. Senapati, S. Chakroborty, G. Saha\",\"doi\":\"10.1109/INDCON.2006.302757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker identification (SI) system needs an efficient feature extraction process and an appropriate speaker model developed from these features. The work introduces the fusion of log Gabor wavelet (LGW) and maximum a posteriori (MAP) estimator for robust text-independent SI system. The focus of this paper is on the robustness to degradations produced by transmission over a telephone channel. Complete experimental framework is conducted on 49 speakers, conversational telephone King-92 SI speech database with two well known speaker models i.e. Gaussian mixture model (GMM) and vector quantization (VQ). Comparisons are made with two different established methods as well as with normal feature extraction procedure to show the robustness of the new approach in different time segments. The GMM attains 98.8% of identification accuracy using 30 second of wide band speech utterances and 87.3% of identification accuracy using 30 second of narrow band speech utterances and is shown to outperform the other methods\",\"PeriodicalId\":122715,\"journal\":{\"name\":\"2006 Annual IEEE India Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2006.302757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2006.302757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

说话人识别系统需要一个有效的特征提取过程,并根据这些特征建立合适的说话人模型。本文介绍了对数Gabor小波(LGW)与最大后验估计(MAP)的融合,用于鲁棒文本无关的SI系统。本文的重点是对通过电话信道传输产生的退化的鲁棒性。采用高斯混合模型(Gaussian mixture model, GMM)和矢量量化(vector quanti量化,VQ)两种常用的说话人模型,在49个说话人的会话电话King-92 SI语音数据库上进行了完整的实验框架。通过与两种不同的已建立的方法以及与常规特征提取方法的比较,证明了新方法在不同时间段的鲁棒性。GMM对30秒宽带语音的识别准确率达到98.8%,对30秒窄带语音的识别准确率达到87.3%,优于其他方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log Gabor Wavelet and Maximum a Posteriori Estimator in Speaker Identification
Speaker identification (SI) system needs an efficient feature extraction process and an appropriate speaker model developed from these features. The work introduces the fusion of log Gabor wavelet (LGW) and maximum a posteriori (MAP) estimator for robust text-independent SI system. The focus of this paper is on the robustness to degradations produced by transmission over a telephone channel. Complete experimental framework is conducted on 49 speakers, conversational telephone King-92 SI speech database with two well known speaker models i.e. Gaussian mixture model (GMM) and vector quantization (VQ). Comparisons are made with two different established methods as well as with normal feature extraction procedure to show the robustness of the new approach in different time segments. The GMM attains 98.8% of identification accuracy using 30 second of wide band speech utterances and 87.3% of identification accuracy using 30 second of narrow band speech utterances and is shown to outperform the other methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信