{"title":"(EG)指数- mir类分布的进一步发展","authors":"C. Ampadu","doi":"10.15226/2475-4714/3/2/00137","DOIUrl":null,"url":null,"abstract":"The Modified Inverse Rayleigh (MIR) distribution appeared in [Khan, M. S. (2014).Modified inverse Rayleigh distribution. International Journal of Computer Applications, 87(13):28–33] who got some theoretical properties of this distribution, and in[Nasiru, S., Mwita, P. N. and Ngesa, O. (2017). Exponentiated Generalized Exponential Dagum Distribution. Journal of King Saud University- Science, In Press] they introduced the (EG) Exponential-X class of distributions and obtained some theoretical properties with application. By assuming the random variable X follows the MIR distribution, some theoretical properties with application of the (EG) Exponential-MIR Class of distributions appeared in [Nasiru, S., Mwita, P. N. and Ngesa, O. (2018). Discussion on Generalized Modified Inverse Rayleigh Distribution. Applied Mathematics and Information Sciences, 12(1):113-124]. In the present paper we propose some extensions of the (EG) Exponential-MIR class of distributions. The (EG) Exponential- MIR class of distributions is part of Chapter 5 [Nasiru, S. (2018). A New Generalization of Transformed-Transformer Family of Distributions. Doctor of Philosophy thesis in Mathematics (Statistics Option). Pan African University, Institute for Basic Sciences, Technology and Innovation, Kenya], where the naming convention “NEGMIR” is used Keywords: T-X (W) family of distributions; Exponentiated Generalized distributions; Modified Inverse Rayleigh distribution; biological data; health data","PeriodicalId":438775,"journal":{"name":"Journal of Advanced Research in Biotechnology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further Developments on the (EG) Exponential-MIR Class of Distributions\",\"authors\":\"C. Ampadu\",\"doi\":\"10.15226/2475-4714/3/2/00137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Modified Inverse Rayleigh (MIR) distribution appeared in [Khan, M. S. (2014).Modified inverse Rayleigh distribution. International Journal of Computer Applications, 87(13):28–33] who got some theoretical properties of this distribution, and in[Nasiru, S., Mwita, P. N. and Ngesa, O. (2017). Exponentiated Generalized Exponential Dagum Distribution. Journal of King Saud University- Science, In Press] they introduced the (EG) Exponential-X class of distributions and obtained some theoretical properties with application. By assuming the random variable X follows the MIR distribution, some theoretical properties with application of the (EG) Exponential-MIR Class of distributions appeared in [Nasiru, S., Mwita, P. N. and Ngesa, O. (2018). Discussion on Generalized Modified Inverse Rayleigh Distribution. Applied Mathematics and Information Sciences, 12(1):113-124]. In the present paper we propose some extensions of the (EG) Exponential-MIR class of distributions. The (EG) Exponential- MIR class of distributions is part of Chapter 5 [Nasiru, S. (2018). A New Generalization of Transformed-Transformer Family of Distributions. Doctor of Philosophy thesis in Mathematics (Statistics Option). Pan African University, Institute for Basic Sciences, Technology and Innovation, Kenya], where the naming convention “NEGMIR” is used Keywords: T-X (W) family of distributions; Exponentiated Generalized distributions; Modified Inverse Rayleigh distribution; biological data; health data\",\"PeriodicalId\":438775,\"journal\":{\"name\":\"Journal of Advanced Research in Biotechnology\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15226/2475-4714/3/2/00137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15226/2475-4714/3/2/00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
修正逆瑞利(MIR)分布出现在[Khan, M. S.(2014)]。修正逆瑞利分布。[j] .国际计算机应用学报,87(13):28-33]. Nasiru, S., Mwita, P. N. and Ngesa, O.(2017)。指数广义指数Dagum分布。他们引入了(EG) Exponential-X类分布,并通过应用获得了一些理论性质。通过假设随机变量X遵循MIR分布,在[Nasiru, S., Mwita, P. N. and Ngesa, O.](2018)中出现了一些应用(EG)指数-MIR类分布的理论性质。广义修正逆瑞利分布的讨论。应用数学与信息科学,12(1):113-124。在本文中,我们提出了(EG)指数- mir类分布的一些扩展。(EG)指数- MIR类分布是第5章的一部分[Nasiru, S.(2018)]。变换-变压器分布族的新推广。数学博士学位论文(统计学选项)。泛非大学,基础科学、技术与创新研究所,肯尼亚],其中使用了命名惯例“NEGMIR”。关键词:T-X (W)分布族;指数广义分布;修正逆瑞利分布;生物数据;健康数据
Further Developments on the (EG) Exponential-MIR Class of Distributions
The Modified Inverse Rayleigh (MIR) distribution appeared in [Khan, M. S. (2014).Modified inverse Rayleigh distribution. International Journal of Computer Applications, 87(13):28–33] who got some theoretical properties of this distribution, and in[Nasiru, S., Mwita, P. N. and Ngesa, O. (2017). Exponentiated Generalized Exponential Dagum Distribution. Journal of King Saud University- Science, In Press] they introduced the (EG) Exponential-X class of distributions and obtained some theoretical properties with application. By assuming the random variable X follows the MIR distribution, some theoretical properties with application of the (EG) Exponential-MIR Class of distributions appeared in [Nasiru, S., Mwita, P. N. and Ngesa, O. (2018). Discussion on Generalized Modified Inverse Rayleigh Distribution. Applied Mathematics and Information Sciences, 12(1):113-124]. In the present paper we propose some extensions of the (EG) Exponential-MIR class of distributions. The (EG) Exponential- MIR class of distributions is part of Chapter 5 [Nasiru, S. (2018). A New Generalization of Transformed-Transformer Family of Distributions. Doctor of Philosophy thesis in Mathematics (Statistics Option). Pan African University, Institute for Basic Sciences, Technology and Innovation, Kenya], where the naming convention “NEGMIR” is used Keywords: T-X (W) family of distributions; Exponentiated Generalized distributions; Modified Inverse Rayleigh distribution; biological data; health data