利用聚类优化资源需求估计方法

Johannes Grohmann, Simon Eismann, A. Bauer, Marwin Züfle, N. Herbst, Samuel Kounev
{"title":"利用聚类优化资源需求估计方法","authors":"Johannes Grohmann, Simon Eismann, A. Bauer, Marwin Züfle, N. Herbst, Samuel Kounev","doi":"10.1109/FAS-W.2019.00043","DOIUrl":null,"url":null,"abstract":"Resource demands are crucial parameters for modeling and predicting the performance of software systems. Direct measurement of these resource demands is usually infeasible due to instrumentation overheads causing measurement interferences and perturbation in production environments. Thus, a number of statistical estimation approaches (e.g., based on optimization, regression or Kalman filters) have been proposed in the literature. Most of these approaches are parameterized. These parameters influence the estimation quality and the required computation time. Existing work uses historical data as training sets to optimize those parameters and to minimize the estimation error of those approaches. However, if the data traces are fundamentally different, the optimal parameter settings are different as well. In this paper, we propose to use automated clustering in order to group training sets into groups of similar optimization behavior. This way, optimization can be specifically tailored to certain groups of traces in a self-aware manner. During run-time, every trace is first sorted into a cluster, where the respective cluster-wide parameter optimum can be applied. A preliminary case study shows that clustering can provide promising improvements.","PeriodicalId":368308,"journal":{"name":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"83 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Utilizing Clustering to Optimize Resource Demand Estimation Approaches\",\"authors\":\"Johannes Grohmann, Simon Eismann, A. Bauer, Marwin Züfle, N. Herbst, Samuel Kounev\",\"doi\":\"10.1109/FAS-W.2019.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource demands are crucial parameters for modeling and predicting the performance of software systems. Direct measurement of these resource demands is usually infeasible due to instrumentation overheads causing measurement interferences and perturbation in production environments. Thus, a number of statistical estimation approaches (e.g., based on optimization, regression or Kalman filters) have been proposed in the literature. Most of these approaches are parameterized. These parameters influence the estimation quality and the required computation time. Existing work uses historical data as training sets to optimize those parameters and to minimize the estimation error of those approaches. However, if the data traces are fundamentally different, the optimal parameter settings are different as well. In this paper, we propose to use automated clustering in order to group training sets into groups of similar optimization behavior. This way, optimization can be specifically tailored to certain groups of traces in a self-aware manner. During run-time, every trace is first sorted into a cluster, where the respective cluster-wide parameter optimum can be applied. A preliminary case study shows that clustering can provide promising improvements.\",\"PeriodicalId\":368308,\"journal\":{\"name\":\"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"volume\":\"83 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAS-W.2019.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2019.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

资源需求是建模和预测软件系统性能的关键参数。直接测量这些资源需求通常是不可行的,因为仪器开销会在生产环境中造成测量干扰和扰动。因此,文献中提出了许多统计估计方法(例如,基于优化、回归或卡尔曼滤波器)。这些方法大多是参数化的。这些参数影响估计质量和所需的计算时间。现有的工作使用历史数据作为训练集来优化这些参数并最小化这些方法的估计误差。但是,如果数据轨迹根本不同,则最佳参数设置也不同。在本文中,我们提出使用自动聚类来将训练集分组为具有相似优化行为的组。这样,优化就可以以一种自我意识的方式专门针对特定的轨迹组进行调整。在运行时,每个跟踪首先被分类到一个集群中,在这个集群中可以应用相应的集群范围内的参数优化。初步的案例研究表明,聚类可以提供有希望的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Clustering to Optimize Resource Demand Estimation Approaches
Resource demands are crucial parameters for modeling and predicting the performance of software systems. Direct measurement of these resource demands is usually infeasible due to instrumentation overheads causing measurement interferences and perturbation in production environments. Thus, a number of statistical estimation approaches (e.g., based on optimization, regression or Kalman filters) have been proposed in the literature. Most of these approaches are parameterized. These parameters influence the estimation quality and the required computation time. Existing work uses historical data as training sets to optimize those parameters and to minimize the estimation error of those approaches. However, if the data traces are fundamentally different, the optimal parameter settings are different as well. In this paper, we propose to use automated clustering in order to group training sets into groups of similar optimization behavior. This way, optimization can be specifically tailored to certain groups of traces in a self-aware manner. During run-time, every trace is first sorted into a cluster, where the respective cluster-wide parameter optimum can be applied. A preliminary case study shows that clustering can provide promising improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信