使用高阶统计量的系统识别

M. Fahmy, G. El-Raheem, A. El-Sallam
{"title":"使用高阶统计量的系统识别","authors":"M. Fahmy, G. El-Raheem, A. El-Sallam","doi":"10.1109/NRSC.1999.760922","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for the identification of unknown systems, using measurements of the output signal only. It describes a convergent adaptive algorithm that identifies the parameters of the unknown system whether a minimum phase or non-minimum phase one. The identification process is achieved through exciting the adaptive system by an independent random identically distributed signal i.i.d., and minimizing-in a least squares sense-the difference between the cumulants of the desired response and the output of the adaptive system. In the general ARMA process, the adaptive system is modeled as discrete orthogonal sections. Illustrative examples are given to show that the proposed method manages to identify unknown systems that known published fail to identify. The identification is shown to be successful even when the desired signal is contaminated with noise.","PeriodicalId":250544,"journal":{"name":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System identification using higher order statistics\",\"authors\":\"M. Fahmy, G. El-Raheem, A. El-Sallam\",\"doi\":\"10.1109/NRSC.1999.760922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for the identification of unknown systems, using measurements of the output signal only. It describes a convergent adaptive algorithm that identifies the parameters of the unknown system whether a minimum phase or non-minimum phase one. The identification process is achieved through exciting the adaptive system by an independent random identically distributed signal i.i.d., and minimizing-in a least squares sense-the difference between the cumulants of the desired response and the output of the adaptive system. In the general ARMA process, the adaptive system is modeled as discrete orthogonal sections. Illustrative examples are given to show that the proposed method manages to identify unknown systems that known published fail to identify. The identification is shown to be successful even when the desired signal is contaminated with noise.\",\"PeriodicalId\":250544,\"journal\":{\"name\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.1999.760922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1999.760922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种识别未知系统的新方法,仅使用输出信号的测量。描述了一种收敛的自适应算法,该算法可以识别未知系统的最小相位和非最小相位。识别过程是通过一个独立的随机同分布信号来激励自适应系统,并在最小二乘意义上最小化期望响应的累积量与自适应系统的输出量之间的差来实现的。在一般的ARMA过程中,自适应系统被建模为离散正交截面。实例表明,该方法能够有效地识别出已知发布的系统无法识别的未知系统。即使在期望的信号被噪声污染的情况下,识别也是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System identification using higher order statistics
This paper presents a novel approach for the identification of unknown systems, using measurements of the output signal only. It describes a convergent adaptive algorithm that identifies the parameters of the unknown system whether a minimum phase or non-minimum phase one. The identification process is achieved through exciting the adaptive system by an independent random identically distributed signal i.i.d., and minimizing-in a least squares sense-the difference between the cumulants of the desired response and the output of the adaptive system. In the general ARMA process, the adaptive system is modeled as discrete orthogonal sections. Illustrative examples are given to show that the proposed method manages to identify unknown systems that known published fail to identify. The identification is shown to be successful even when the desired signal is contaminated with noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信