通过部署水面浮标的协同水下航行器导航

Tauhidul Alam, L. Gandy, Leonardo Bobadilla, Ryan N. Smith
{"title":"通过部署水面浮标的协同水下航行器导航","authors":"Tauhidul Alam, L. Gandy, Leonardo Bobadilla, Ryan N. Smith","doi":"10.1109/IRC.2020.00020","DOIUrl":null,"url":null,"abstract":"In this paper, we present a navigation method for an Autonomous Underwater Vehicle (AUV) in an underwater environment making use of a deployed set of static water surface platforms called buoys on the environment. Our method has the following steps: 1) Communication regions of buoys are computed from their communication capabilities; 2) A set of feasible paths through buoys between given initial and goal locations is calculated using the preimages of the buoys' communication regions; 3) An AUV navigation path that utilizes the least number of buoys for state estimation is chosen from the calculated feasible paths. Through extensive simulations, we validated our method which demonstrates its applicability.","PeriodicalId":232817,"journal":{"name":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic AUV Navigation through Deployed Surface Buoys\",\"authors\":\"Tauhidul Alam, L. Gandy, Leonardo Bobadilla, Ryan N. Smith\",\"doi\":\"10.1109/IRC.2020.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a navigation method for an Autonomous Underwater Vehicle (AUV) in an underwater environment making use of a deployed set of static water surface platforms called buoys on the environment. Our method has the following steps: 1) Communication regions of buoys are computed from their communication capabilities; 2) A set of feasible paths through buoys between given initial and goal locations is calculated using the preimages of the buoys' communication regions; 3) An AUV navigation path that utilizes the least number of buoys for state estimation is chosen from the calculated feasible paths. Through extensive simulations, we validated our method which demonstrates its applicability.\",\"PeriodicalId\":232817,\"journal\":{\"name\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2020.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种在水下环境中自主水下航行器(AUV)的导航方法,该方法利用一组被称为环境浮标的静态水面平台。我们的方法有以下几个步骤:1)根据浮标的通信能力计算浮标的通信区域;2)利用浮标通信区域的预像,计算给定初始位置与目标位置之间通过浮标的可行路径集;3)从计算出的可行路径中选择用于状态估计的浮标数量最少的AUV导航路径。通过大量的仿真,验证了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic AUV Navigation through Deployed Surface Buoys
In this paper, we present a navigation method for an Autonomous Underwater Vehicle (AUV) in an underwater environment making use of a deployed set of static water surface platforms called buoys on the environment. Our method has the following steps: 1) Communication regions of buoys are computed from their communication capabilities; 2) A set of feasible paths through buoys between given initial and goal locations is calculated using the preimages of the buoys' communication regions; 3) An AUV navigation path that utilizes the least number of buoys for state estimation is chosen from the calculated feasible paths. Through extensive simulations, we validated our method which demonstrates its applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信