{"title":"微通道内电动涡量的实验研究","authors":"W. Hau, L. Lee, Y.-K. Lee, M. Wong, Y. Zohar","doi":"10.1109/SENSOR.2003.1215557","DOIUrl":null,"url":null,"abstract":"Electrokinetic generation of micro-flow patterns has advanced in recent years and received significant attention due to promising applications in biotechnology. Basic flow fields like bi-directional shear and out-of-plane vortices have been generated electrokinetically in microchannel liquid flow using various surface-charge patterns. In-plane vortex flows present a higher challenge since positive and negative charge regions on the same surface are required. Utilizing a newly-developed polymer-coating technology, the fabrication and characterization of microchannel devices with a variety of charge patterns are reported. Pairs of in-plane counter-rotating vortices or serpentine-like vortical motion have been observed depending on the absence or presence of a mean flow. The experimental results have been found to be consistent with CFD computations using a commercial code.","PeriodicalId":196104,"journal":{"name":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","volume":"1802 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Experimental investigation of electrokinetically generated in-plane vorticity in a microchannel\",\"authors\":\"W. Hau, L. Lee, Y.-K. Lee, M. Wong, Y. Zohar\",\"doi\":\"10.1109/SENSOR.2003.1215557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrokinetic generation of micro-flow patterns has advanced in recent years and received significant attention due to promising applications in biotechnology. Basic flow fields like bi-directional shear and out-of-plane vortices have been generated electrokinetically in microchannel liquid flow using various surface-charge patterns. In-plane vortex flows present a higher challenge since positive and negative charge regions on the same surface are required. Utilizing a newly-developed polymer-coating technology, the fabrication and characterization of microchannel devices with a variety of charge patterns are reported. Pairs of in-plane counter-rotating vortices or serpentine-like vortical motion have been observed depending on the absence or presence of a mean flow. The experimental results have been found to be consistent with CFD computations using a commercial code.\",\"PeriodicalId\":196104,\"journal\":{\"name\":\"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)\",\"volume\":\"1802 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2003.1215557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2003.1215557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigation of electrokinetically generated in-plane vorticity in a microchannel
Electrokinetic generation of micro-flow patterns has advanced in recent years and received significant attention due to promising applications in biotechnology. Basic flow fields like bi-directional shear and out-of-plane vortices have been generated electrokinetically in microchannel liquid flow using various surface-charge patterns. In-plane vortex flows present a higher challenge since positive and negative charge regions on the same surface are required. Utilizing a newly-developed polymer-coating technology, the fabrication and characterization of microchannel devices with a variety of charge patterns are reported. Pairs of in-plane counter-rotating vortices or serpentine-like vortical motion have been observed depending on the absence or presence of a mean flow. The experimental results have been found to be consistent with CFD computations using a commercial code.