Hussein Ali, P. Caragiulo, C. Tamma, Xiaobin Xu, B. Markovic, F. Abu-Nimeh, D. Doering, A. Dragone, G. Haller
{"title":"x射线探测器中Sigma δ adc的单端差分采样技术","authors":"Hussein Ali, P. Caragiulo, C. Tamma, Xiaobin Xu, B. Markovic, F. Abu-Nimeh, D. Doering, A. Dragone, G. Haller","doi":"10.1109/MWSCAS.2019.8885204","DOIUrl":null,"url":null,"abstract":"A sampling technique for X-ray detectors is presented, which performs a two channel single-ended-to-differential sampling, and buffers the sampled signals serially to the incremental Sigma Delta ADC. This sampling technique maximizes the readout speed of the X-ray detectors, while allowing the ADC to sample the input signal multiple times for reduced thermal noise and higher resolution. The sampler is implemented in 0.25 µm CMOS technology, as a part of a mixed signal processing backend for the pixel signal, consists of buffering, ADC conversion and readout circuits. Measured performance shows a high resolution of >77 dB SNR at 3.3 Kfps, which emphasizes the speed advantage and high linearity of the proposed approach.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Ended-to-Differential Sampling Technique for Sigma Delta ADCs in X-Ray Detectors\",\"authors\":\"Hussein Ali, P. Caragiulo, C. Tamma, Xiaobin Xu, B. Markovic, F. Abu-Nimeh, D. Doering, A. Dragone, G. Haller\",\"doi\":\"10.1109/MWSCAS.2019.8885204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sampling technique for X-ray detectors is presented, which performs a two channel single-ended-to-differential sampling, and buffers the sampled signals serially to the incremental Sigma Delta ADC. This sampling technique maximizes the readout speed of the X-ray detectors, while allowing the ADC to sample the input signal multiple times for reduced thermal noise and higher resolution. The sampler is implemented in 0.25 µm CMOS technology, as a part of a mixed signal processing backend for the pixel signal, consists of buffering, ADC conversion and readout circuits. Measured performance shows a high resolution of >77 dB SNR at 3.3 Kfps, which emphasizes the speed advantage and high linearity of the proposed approach.\",\"PeriodicalId\":287815,\"journal\":{\"name\":\"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2019.8885204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-Ended-to-Differential Sampling Technique for Sigma Delta ADCs in X-Ray Detectors
A sampling technique for X-ray detectors is presented, which performs a two channel single-ended-to-differential sampling, and buffers the sampled signals serially to the incremental Sigma Delta ADC. This sampling technique maximizes the readout speed of the X-ray detectors, while allowing the ADC to sample the input signal multiple times for reduced thermal noise and higher resolution. The sampler is implemented in 0.25 µm CMOS technology, as a part of a mixed signal processing backend for the pixel signal, consists of buffering, ADC conversion and readout circuits. Measured performance shows a high resolution of >77 dB SNR at 3.3 Kfps, which emphasizes the speed advantage and high linearity of the proposed approach.