学习以任务为导向的个性化端到端对话,实现快速可靠的自适应

Shuang Qiu, Kang Zhang
{"title":"学习以任务为导向的个性化端到端对话,实现快速可靠的自适应","authors":"Shuang Qiu, Kang Zhang","doi":"10.1109/dsins54396.2021.9670559","DOIUrl":null,"url":null,"abstract":"Personalized task-oriented dialog agents can select responses according to the personalities of users. In this way, they facilitate understanding, and improve the efficiency of the conversation. Existing personalized agents generate matching functions according to human designed persona descriptions. This agent works well in the traditional scenario where sufficient samples are used, but can hardly fast adapt to new personas with few samples. In this paper, we propose to extend meta-learning algorithms to personalized end-to-end task-oriented dialogue learning, and train a switch model to allow for human agent use. Our model learns to quickly adapt to new personas leveraging a few dialogue samples and requesting human agents, while maximizing the task success of users. Empirical results on the Personalized bAbI dataset indicate that our proposal is effective in achieving the desired goals.","PeriodicalId":243724,"journal":{"name":"2021 International Conference on Digital Society and Intelligent Systems (DSInS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Personalized End-to-End Task-Oriented Dialogue for Fast and Reliable Adaptation\",\"authors\":\"Shuang Qiu, Kang Zhang\",\"doi\":\"10.1109/dsins54396.2021.9670559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized task-oriented dialog agents can select responses according to the personalities of users. In this way, they facilitate understanding, and improve the efficiency of the conversation. Existing personalized agents generate matching functions according to human designed persona descriptions. This agent works well in the traditional scenario where sufficient samples are used, but can hardly fast adapt to new personas with few samples. In this paper, we propose to extend meta-learning algorithms to personalized end-to-end task-oriented dialogue learning, and train a switch model to allow for human agent use. Our model learns to quickly adapt to new personas leveraging a few dialogue samples and requesting human agents, while maximizing the task success of users. Empirical results on the Personalized bAbI dataset indicate that our proposal is effective in achieving the desired goals.\",\"PeriodicalId\":243724,\"journal\":{\"name\":\"2021 International Conference on Digital Society and Intelligent Systems (DSInS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Digital Society and Intelligent Systems (DSInS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/dsins54396.2021.9670559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Society and Intelligent Systems (DSInS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/dsins54396.2021.9670559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以任务为导向的个性化对话代理可以根据用户的个性选择回应。这样,它们就能促进理解,提高对话效率。现有的个性化代理根据人类设计的角色描述生成匹配功能。这种代理在使用足够样本的传统场景中效果很好,但在样本较少的情况下,很难快速适应新的角色。在本文中,我们建议将元学习算法扩展到面向任务的个性化端到端对话学习中,并训练一个切换模型,以便于人类代理使用。我们的模型利用少量对话样本和人类代理请求,学会快速适应新角色,同时最大限度地提高用户的任务成功率。个性化 bAbI 数据集的经验结果表明,我们的建议能有效实现预期目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Personalized End-to-End Task-Oriented Dialogue for Fast and Reliable Adaptation
Personalized task-oriented dialog agents can select responses according to the personalities of users. In this way, they facilitate understanding, and improve the efficiency of the conversation. Existing personalized agents generate matching functions according to human designed persona descriptions. This agent works well in the traditional scenario where sufficient samples are used, but can hardly fast adapt to new personas with few samples. In this paper, we propose to extend meta-learning algorithms to personalized end-to-end task-oriented dialogue learning, and train a switch model to allow for human agent use. Our model learns to quickly adapt to new personas leveraging a few dialogue samples and requesting human agents, while maximizing the task success of users. Empirical results on the Personalized bAbI dataset indicate that our proposal is effective in achieving the desired goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信