用于生物医学应用的可配置小波处理器

Wei-Lung Yang, Hsi-Pin Ma
{"title":"用于生物医学应用的可配置小波处理器","authors":"Wei-Lung Yang, Hsi-Pin Ma","doi":"10.1109/VLSI-DAT.2015.7114539","DOIUrl":null,"url":null,"abstract":"In ECG signal processing, we can use discrete wavelet transform (DWT) algorithm to remove unusable features from original signals, and then extract R-R intervals from the reconstructed waveform. In EEG signal processing, we also can use the algorithm based on DWT to observe frequency-domain features in Parkinson's disease (PD). Hence, we proposed a configurable wavelet processor with feature extraction circuit in the sensor for more efficient biomedical applications. We have implemented the design with TSMC 0.18 μm technology. The total core area is 1.15 mm2, the operating voltage is 1.8 V, the operating clock frequency is 360 Hz, and the power consumption is 0.52 μW. Compared with sending raw ECG data, our design saves as much as 99.5% power while only detecting and sending R-R interval sequences in ECG application.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A configurable wavelet processor for biomedical applications\",\"authors\":\"Wei-Lung Yang, Hsi-Pin Ma\",\"doi\":\"10.1109/VLSI-DAT.2015.7114539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ECG signal processing, we can use discrete wavelet transform (DWT) algorithm to remove unusable features from original signals, and then extract R-R intervals from the reconstructed waveform. In EEG signal processing, we also can use the algorithm based on DWT to observe frequency-domain features in Parkinson's disease (PD). Hence, we proposed a configurable wavelet processor with feature extraction circuit in the sensor for more efficient biomedical applications. We have implemented the design with TSMC 0.18 μm technology. The total core area is 1.15 mm2, the operating voltage is 1.8 V, the operating clock frequency is 360 Hz, and the power consumption is 0.52 μW. Compared with sending raw ECG data, our design saves as much as 99.5% power while only detecting and sending R-R interval sequences in ECG application.\",\"PeriodicalId\":369130,\"journal\":{\"name\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-DAT.2015.7114539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在心电信号处理中,我们可以利用离散小波变换(DWT)算法去除原始信号中的无用特征,然后从重构波形中提取R-R区间。在脑电信号处理中,我们也可以使用基于DWT的算法来观察帕金森病(PD)的频域特征。因此,我们提出了一种具有特征提取电路的可配置小波处理器,以提高传感器在生物医学领域的应用效率。我们采用台积电0.18 μm工艺实现了该设计。总核心面积为1.15 mm2,工作电压为1.8 V,工作时钟频率为360 Hz,功耗为0.52 μW。与发送原始心电数据相比,我们的设计在心电应用中只检测和发送R-R间隔序列,节省99.5%的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A configurable wavelet processor for biomedical applications
In ECG signal processing, we can use discrete wavelet transform (DWT) algorithm to remove unusable features from original signals, and then extract R-R intervals from the reconstructed waveform. In EEG signal processing, we also can use the algorithm based on DWT to observe frequency-domain features in Parkinson's disease (PD). Hence, we proposed a configurable wavelet processor with feature extraction circuit in the sensor for more efficient biomedical applications. We have implemented the design with TSMC 0.18 μm technology. The total core area is 1.15 mm2, the operating voltage is 1.8 V, the operating clock frequency is 360 Hz, and the power consumption is 0.52 μW. Compared with sending raw ECG data, our design saves as much as 99.5% power while only detecting and sending R-R interval sequences in ECG application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信