基于gan和NST的人脸恢复

Yanshun Zhao, Jinda Hu, Xindong Zhang
{"title":"基于gan和NST的人脸恢复","authors":"Yanshun Zhao, Jinda Hu, Xindong Zhang","doi":"10.1145/3395260.3395304","DOIUrl":null,"url":null,"abstract":"Image restoration technology is a research hotspot in the field of deep learning computer vision. However, due to the complexity of facial textures, the existing face restoration algorithms lack visual coherence. We propose a face restoration algorithm (GNST) based on Generative Adversarial Networks (GANs) and Neural Style Transfer (NST), which uses the generative network to repair the damaged facial contents and then uses the style transfer to adjust the overall style. At the stage of repairing content, we design four losses from different aspects. We add two total variation losses (tv loss) besides the traditional content loss and adversarial loss. The first tv loss can make the generated image smoother and cleaner. The second tv loss can effectively prevent the generator's gradient collapse when generator \"cheat\" the discriminator. In addition, it is used to highlight facial important features. Experiments show that G-NST achieves better results than existing methods.","PeriodicalId":103490,"journal":{"name":"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face Restoration Based on GANs and NST\",\"authors\":\"Yanshun Zhao, Jinda Hu, Xindong Zhang\",\"doi\":\"10.1145/3395260.3395304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image restoration technology is a research hotspot in the field of deep learning computer vision. However, due to the complexity of facial textures, the existing face restoration algorithms lack visual coherence. We propose a face restoration algorithm (GNST) based on Generative Adversarial Networks (GANs) and Neural Style Transfer (NST), which uses the generative network to repair the damaged facial contents and then uses the style transfer to adjust the overall style. At the stage of repairing content, we design four losses from different aspects. We add two total variation losses (tv loss) besides the traditional content loss and adversarial loss. The first tv loss can make the generated image smoother and cleaner. The second tv loss can effectively prevent the generator's gradient collapse when generator \\\"cheat\\\" the discriminator. In addition, it is used to highlight facial important features. Experiments show that G-NST achieves better results than existing methods.\",\"PeriodicalId\":103490,\"journal\":{\"name\":\"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3395260.3395304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395260.3395304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像恢复技术是深度学习计算机视觉领域的一个研究热点。然而,由于人脸纹理的复杂性,现有的人脸恢复算法缺乏视觉一致性。提出了一种基于生成对抗网络(GANs)和神经风格迁移(NST)的人脸恢复算法(GNST),该算法首先利用生成网络修复受损的面部内容,然后利用风格迁移对整体风格进行调整。在内容修复阶段,我们从不同的角度设计了四种损失。我们在传统的内容损失和对抗损失的基础上增加了两种总变异损失(电视损失)。第一次电视损耗可以使生成的图像更平滑、更清晰。二次电视损耗可以有效防止发生器“欺骗”鉴别器时产生的梯度崩溃。此外,它还用于突出面部的重要特征。实验表明,G-NST比现有方法取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Restoration Based on GANs and NST
Image restoration technology is a research hotspot in the field of deep learning computer vision. However, due to the complexity of facial textures, the existing face restoration algorithms lack visual coherence. We propose a face restoration algorithm (GNST) based on Generative Adversarial Networks (GANs) and Neural Style Transfer (NST), which uses the generative network to repair the damaged facial contents and then uses the style transfer to adjust the overall style. At the stage of repairing content, we design four losses from different aspects. We add two total variation losses (tv loss) besides the traditional content loss and adversarial loss. The first tv loss can make the generated image smoother and cleaner. The second tv loss can effectively prevent the generator's gradient collapse when generator "cheat" the discriminator. In addition, it is used to highlight facial important features. Experiments show that G-NST achieves better results than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信