参与敏感互动神经肌肉电治疗系统用于脑卒中后平衡康复的概念研究

Deepesh Kumar, Gorish Aggarwal, Rishabh Sehgal, Abhijit Das, U. Lahiri, Anirban Dutta
{"title":"参与敏感互动神经肌肉电治疗系统用于脑卒中后平衡康复的概念研究","authors":"Deepesh Kumar, Gorish Aggarwal, Rishabh Sehgal, Abhijit Das, U. Lahiri, Anirban Dutta","doi":"10.1109/NER.2015.7146592","DOIUrl":null,"url":null,"abstract":"Stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with neuromuscular electrical stimulation (NMES) where active cortical participation in rehabilitation procedures may be facilitated by driving NMES with electromyogram (EMG), electrooculogram (EOG), and electroencephalogram (EEG) derived biopotentials, that represent simultaneous volitional effort and task engagement. During the visuomotor standing balance task, we propose that gaze-interaction (e.g., fixation duration, pupil diameter, blink rate) with the visual stimuli can be a measure of task engagement which can be used to adapt task difficulty to facilitate post-stroke residual visuomotor function. Here, the elapsed time between the last visual fixation to the target and the initiation of the motor response, known as the quiet eye (QE) period, has emerged as a characteristic of higher levels of performance. In this article, we discuss this novel interactive therapy paradigm consisting of a low-cost static posturography system combined with engagement-sensitive volitionally driven NMES for post-stroke balance rehabilitation.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Engagement-sensitive interactive neuromuscular electrical therapy system for post-stroke balance rehabilitation - a concept study\",\"authors\":\"Deepesh Kumar, Gorish Aggarwal, Rishabh Sehgal, Abhijit Das, U. Lahiri, Anirban Dutta\",\"doi\":\"10.1109/NER.2015.7146592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with neuromuscular electrical stimulation (NMES) where active cortical participation in rehabilitation procedures may be facilitated by driving NMES with electromyogram (EMG), electrooculogram (EOG), and electroencephalogram (EEG) derived biopotentials, that represent simultaneous volitional effort and task engagement. During the visuomotor standing balance task, we propose that gaze-interaction (e.g., fixation duration, pupil diameter, blink rate) with the visual stimuli can be a measure of task engagement which can be used to adapt task difficulty to facilitate post-stroke residual visuomotor function. Here, the elapsed time between the last visual fixation to the target and the initiation of the motor response, known as the quiet eye (QE) period, has emerged as a characteristic of higher levels of performance. In this article, we discuss this novel interactive therapy paradigm consisting of a low-cost static posturography system combined with engagement-sensitive volitionally driven NMES for post-stroke balance rehabilitation.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

当从心脏输送血液到大脑某个区域的动脉破裂或血栓阻塞血液流动从而阻止氧气和营养物质的输送时,就会引起中风。大约一半的中风幸存者会留下某种程度的残疾。神经可塑性与脑卒中后功能障碍有关,但也与康复有关。神经肌肉电刺激(NMES)可以促进有益的神经可塑性改变,其中通过肌电图(EMG)、眼电图(EOG)和脑电图(EEG)衍生的生物电位驱动神经肌肉电刺激(NMES),可以促进皮层对康复过程的积极参与,这些生物电位代表同时的意志努力和任务参与。在视觉运动站立平衡任务中,我们提出与视觉刺激的注视互动(如注视持续时间、瞳孔直径、眨眼频率)可以作为任务参与的衡量标准,可用于调整任务难度以促进卒中后剩余视觉运动功能。在这里,从最后一次注视目标到开始运动反应之间的时间,被称为静眼(QE)期,已经成为更高水平表现的特征。在这篇文章中,我们讨论了这种新型的互动治疗模式,包括低成本的静态姿势记录系统与参与敏感的意志驱动NMES相结合,用于中风后平衡康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engagement-sensitive interactive neuromuscular electrical therapy system for post-stroke balance rehabilitation - a concept study
Stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with neuromuscular electrical stimulation (NMES) where active cortical participation in rehabilitation procedures may be facilitated by driving NMES with electromyogram (EMG), electrooculogram (EOG), and electroencephalogram (EEG) derived biopotentials, that represent simultaneous volitional effort and task engagement. During the visuomotor standing balance task, we propose that gaze-interaction (e.g., fixation duration, pupil diameter, blink rate) with the visual stimuli can be a measure of task engagement which can be used to adapt task difficulty to facilitate post-stroke residual visuomotor function. Here, the elapsed time between the last visual fixation to the target and the initiation of the motor response, known as the quiet eye (QE) period, has emerged as a characteristic of higher levels of performance. In this article, we discuss this novel interactive therapy paradigm consisting of a low-cost static posturography system combined with engagement-sensitive volitionally driven NMES for post-stroke balance rehabilitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信