用遗传算法生成路径测试用例

Jin-Cherng Lin, Pu-Lin Yeh
{"title":"用遗传算法生成路径测试用例","authors":"Jin-Cherng Lin, Pu-Lin Yeh","doi":"10.1109/ATS.2000.893632","DOIUrl":null,"url":null,"abstract":"Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. The evolved test case can lead the program execution to achieve the target path. A fitness function named SIMILARITY is defined to determine which test case should survive if the final test case has not been found.","PeriodicalId":403864,"journal":{"name":"Proceedings of the Ninth Asian Test Symposium","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Using genetic algorithms for test case generation in path testing\",\"authors\":\"Jin-Cherng Lin, Pu-Lin Yeh\",\"doi\":\"10.1109/ATS.2000.893632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. The evolved test case can lead the program execution to achieve the target path. A fitness function named SIMILARITY is defined to determine which test case should survive if the final test case has not been found.\",\"PeriodicalId\":403864,\"journal\":{\"name\":\"Proceedings of the Ninth Asian Test Symposium\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth Asian Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.2000.893632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth Asian Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2000.893632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

通用算法的灵感来自达尔文的适者生存理论。本文讨论了一种可以自动生成测试用例来测试选定路径的遗传算法。该算法以选定的路径为目标,迭代地执行操作符序列,以使测试用例进化。演进的测试用例可以引导程序执行实现目标路径。定义了一个名为SIMILARITY的适应度函数,以确定如果没有找到最终的测试用例,哪个测试用例应该存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using genetic algorithms for test case generation in path testing
Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. The evolved test case can lead the program execution to achieve the target path. A fitness function named SIMILARITY is defined to determine which test case should survive if the final test case has not been found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信