使用超维计算的可穿戴健康应用的灵活和个性化学习

Sina Shahhosseini, Yang Ni, Emad Kasaeyan Naeini, M. Imani, A. Rahmani, N. Dutt
{"title":"使用超维计算的可穿戴健康应用的灵活和个性化学习","authors":"Sina Shahhosseini, Yang Ni, Emad Kasaeyan Naeini, M. Imani, A. Rahmani, N. Dutt","doi":"10.1145/3526241.3530373","DOIUrl":null,"url":null,"abstract":"Health and wellness applications increasingly rely on machine learning techniques to learn end-user physiological and behavioral patterns in everyday settings, posing two key challenges: inability to perform on-device online learning for resource-constrained wearables, and learning algorithms that support privacy-preserving personalization. We exploit a Hyperdimensional computing (HDC) solution for wearable devices that offers flexibility, high efficiency, and performance while enabling on-device personalization and privacy protection. We evaluate the efficacy of our approach using three case studies and show that our system improves performance of training by up to 35.8x compared with the state-of-the-art while offering a comparable accuracy.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible and Personalized Learning for Wearable Health Applications using HyperDimensional Computing\",\"authors\":\"Sina Shahhosseini, Yang Ni, Emad Kasaeyan Naeini, M. Imani, A. Rahmani, N. Dutt\",\"doi\":\"10.1145/3526241.3530373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Health and wellness applications increasingly rely on machine learning techniques to learn end-user physiological and behavioral patterns in everyday settings, posing two key challenges: inability to perform on-device online learning for resource-constrained wearables, and learning algorithms that support privacy-preserving personalization. We exploit a Hyperdimensional computing (HDC) solution for wearable devices that offers flexibility, high efficiency, and performance while enabling on-device personalization and privacy protection. We evaluate the efficacy of our approach using three case studies and show that our system improves performance of training by up to 35.8x compared with the state-of-the-art while offering a comparable accuracy.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

健康和保健应用越来越依赖于机器学习技术来学习终端用户在日常环境中的生理和行为模式,这带来了两个关键挑战:无法为资源有限的可穿戴设备执行设备上的在线学习,以及支持隐私保护个性化的学习算法。我们为可穿戴设备开发了一种超维计算(HDC)解决方案,该解决方案提供了灵活性、高效率和高性能,同时实现了设备上的个性化和隐私保护。我们使用三个案例研究来评估我们的方法的有效性,并表明我们的系统与最先进的训练性能相比提高了35.8倍,同时提供了相当的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible and Personalized Learning for Wearable Health Applications using HyperDimensional Computing
Health and wellness applications increasingly rely on machine learning techniques to learn end-user physiological and behavioral patterns in everyday settings, posing two key challenges: inability to perform on-device online learning for resource-constrained wearables, and learning algorithms that support privacy-preserving personalization. We exploit a Hyperdimensional computing (HDC) solution for wearable devices that offers flexibility, high efficiency, and performance while enabling on-device personalization and privacy protection. We evaluate the efficacy of our approach using three case studies and show that our system improves performance of training by up to 35.8x compared with the state-of-the-art while offering a comparable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信