退火温度对ZnO/CuO纳米复合薄膜特性的影响

S. S. Shariffudin, N. Ibrahim, M. Sarah, H. Hashim
{"title":"退火温度对ZnO/CuO纳米复合薄膜特性的影响","authors":"S. S. Shariffudin, N. Ibrahim, M. Sarah, H. Hashim","doi":"10.1109/SMELEC.2016.7573620","DOIUrl":null,"url":null,"abstract":"Nanoparticles ZnO/CuO composite was successfully prepared through a simple sol-gel spin coating technique. The annealing temperature was within the range of 400°C to 600°C to study its effect to the physical, optical and electrical properties to the thin films. Their characteristics were studied by field emission scanning electron microscopy (FESEM), Atomic Force Microscopy (AFM), UV-Vis spectroscopy and 2-point probes I-V measurement. The thickness and grain size increased with the annealing temperature. The direct optical bandgap observed were between 3.06 eV to 3.2 eV, which increased with the decreased of the annealing temperature. The highest conductivity was obtained for sample annealed at 400°C with a value of 0.61614 S/cm.","PeriodicalId":169983,"journal":{"name":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of annealing temperature on characteristics of ZnO/CuO nanocomposite thin films\",\"authors\":\"S. S. Shariffudin, N. Ibrahim, M. Sarah, H. Hashim\",\"doi\":\"10.1109/SMELEC.2016.7573620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles ZnO/CuO composite was successfully prepared through a simple sol-gel spin coating technique. The annealing temperature was within the range of 400°C to 600°C to study its effect to the physical, optical and electrical properties to the thin films. Their characteristics were studied by field emission scanning electron microscopy (FESEM), Atomic Force Microscopy (AFM), UV-Vis spectroscopy and 2-point probes I-V measurement. The thickness and grain size increased with the annealing temperature. The direct optical bandgap observed were between 3.06 eV to 3.2 eV, which increased with the decreased of the annealing temperature. The highest conductivity was obtained for sample annealed at 400°C with a value of 0.61614 S/cm.\",\"PeriodicalId\":169983,\"journal\":{\"name\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2016.7573620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2016.7573620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过简单的溶胶-凝胶自旋涂层技术,成功制备了纳米ZnO/CuO复合材料。退火温度在400℃~ 600℃范围内,研究其对薄膜物理、光学和电学性能的影响。采用场发射扫描电镜(FESEM)、原子力显微镜(AFM)、紫外可见光谱(UV-Vis)和两点探针I-V测量等方法对其进行了表征。随着退火温度的升高,合金的厚度和晶粒尺寸逐渐增大。观察到的直接光学带隙在3.06 ~ 3.2 eV之间,随退火温度的降低而增大。样品在400℃退火时电导率最高,为0.61614 S/cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of annealing temperature on characteristics of ZnO/CuO nanocomposite thin films
Nanoparticles ZnO/CuO composite was successfully prepared through a simple sol-gel spin coating technique. The annealing temperature was within the range of 400°C to 600°C to study its effect to the physical, optical and electrical properties to the thin films. Their characteristics were studied by field emission scanning electron microscopy (FESEM), Atomic Force Microscopy (AFM), UV-Vis spectroscopy and 2-point probes I-V measurement. The thickness and grain size increased with the annealing temperature. The direct optical bandgap observed were between 3.06 eV to 3.2 eV, which increased with the decreased of the annealing temperature. The highest conductivity was obtained for sample annealed at 400°C with a value of 0.61614 S/cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信