极大偏克隆的交与极小偏克隆的联接

L. Haddad, Hajime Machida, I. Rosenberg
{"title":"极大偏克隆的交与极小偏克隆的联接","authors":"L. Haddad, Hajime Machida, I. Rosenberg","doi":"10.1109/ISMVL.2000.848649","DOIUrl":null,"url":null,"abstract":"Let A be a nonsingleton finite set and M be a family of maximal partial clones with trivial intersection over A. What is the smallest possible cardinality of M? Dually, if F is a family of minimal partial clones whose join is the set of all partial functions on A, then what is the smallest possible cardinality of F? The purpose of this note is to present results related to these two problems.","PeriodicalId":334235,"journal":{"name":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the intersection of maximal partial clones and the join of minimal partial clones\",\"authors\":\"L. Haddad, Hajime Machida, I. Rosenberg\",\"doi\":\"10.1109/ISMVL.2000.848649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A be a nonsingleton finite set and M be a family of maximal partial clones with trivial intersection over A. What is the smallest possible cardinality of M? Dually, if F is a family of minimal partial clones whose join is the set of all partial functions on A, then what is the smallest possible cardinality of F? The purpose of this note is to present results related to these two problems.\",\"PeriodicalId\":334235,\"journal\":{\"name\":\"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2000.848649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2000.848649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设A是一个非单元素有限集合M是A上有平凡交集的极大部分克隆族M的最小可能基数是多少?对偶地,如果F是一个极小偏克隆族它的连接是a上所有偏函数的集合,那么F的最小可能的基数是多少?本说明的目的是介绍与这两个问题有关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the intersection of maximal partial clones and the join of minimal partial clones
Let A be a nonsingleton finite set and M be a family of maximal partial clones with trivial intersection over A. What is the smallest possible cardinality of M? Dually, if F is a family of minimal partial clones whose join is the set of all partial functions on A, then what is the smallest possible cardinality of F? The purpose of this note is to present results related to these two problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信