利用神经网络在精密、位置控制机构中识别和补偿摩擦

D.R. Seidl, T.L. Reineking, R. Lorenz
{"title":"利用神经网络在精密、位置控制机构中识别和补偿摩擦","authors":"D.R. Seidl, T.L. Reineking, R. Lorenz","doi":"10.1109/IAS.1992.244215","DOIUrl":null,"url":null,"abstract":"A special neural network topology has been developed that compensates for friction in precision, position controlled mechanisms. A major contribution is that knowledge of the friction's form is used to determine the neural network's structure. This unique approach solves network sizing and weight initializing problems. The friction model is used for feedforward decoupling of friction-induced torque. The neural network also explicitly incorporates inertia compensation and linear feedback control. Another contribution is a demonstration of the trajectory dependence of static friction compensation with a discrete time controller. The authors include both the theoretical formulation and practical implementation results for the control of a commercial DC motor having a significant amount of static friction.<<ETX>>","PeriodicalId":110710,"journal":{"name":"Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Use of neural networks to identify and compensate for friction in precision, position controlled mechanisms\",\"authors\":\"D.R. Seidl, T.L. Reineking, R. Lorenz\",\"doi\":\"10.1109/IAS.1992.244215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A special neural network topology has been developed that compensates for friction in precision, position controlled mechanisms. A major contribution is that knowledge of the friction's form is used to determine the neural network's structure. This unique approach solves network sizing and weight initializing problems. The friction model is used for feedforward decoupling of friction-induced torque. The neural network also explicitly incorporates inertia compensation and linear feedback control. Another contribution is a demonstration of the trajectory dependence of static friction compensation with a discrete time controller. The authors include both the theoretical formulation and practical implementation results for the control of a commercial DC motor having a significant amount of static friction.<<ETX>>\",\"PeriodicalId\":110710,\"journal\":{\"name\":\"Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.1992.244215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.1992.244215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

一种特殊的神经网络拓扑结构已经被开发出来,用于补偿精密位置控制机构中的摩擦。一个主要的贡献是摩擦形式的知识被用来确定神经网络的结构。这种独特的方法解决了网络规模和权重初始化问题。采用摩擦模型对摩擦力矩进行前馈解耦。该神经网络还明确地结合了惯性补偿和线性反馈控制。另一个贡献是用离散时间控制器演示了静摩擦补偿的轨迹依赖性。作者包括了具有大量静摩擦的商用直流电动机控制的理论公式和实际实现结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of neural networks to identify and compensate for friction in precision, position controlled mechanisms
A special neural network topology has been developed that compensates for friction in precision, position controlled mechanisms. A major contribution is that knowledge of the friction's form is used to determine the neural network's structure. This unique approach solves network sizing and weight initializing problems. The friction model is used for feedforward decoupling of friction-induced torque. The neural network also explicitly incorporates inertia compensation and linear feedback control. Another contribution is a demonstration of the trajectory dependence of static friction compensation with a discrete time controller. The authors include both the theoretical formulation and practical implementation results for the control of a commercial DC motor having a significant amount of static friction.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信