基于Volterra级数的Burgers方程解析解的评价

M. Schiffner, M. Mleczko, G. Schmitz
{"title":"基于Volterra级数的Burgers方程解析解的评价","authors":"M. Schiffner, M. Mleczko, G. Schmitz","doi":"10.1109/ULTSYM.2009.5442057","DOIUrl":null,"url":null,"abstract":"A simple, well-interpretable, and explicit analytical solution to the Burgers equation based on Volterra series is derived. Its region of convergence is investigated and a method for the computationally efficient numerical evaluation of the associated Volterra polynomials is presented. For a given boundary condition, numerical results are compared to a widely-used numerical standard solution. After a propagation distance of 10 cm in steps of 5 mm the Volterra polynomials of degree 2 and 3 achieve relative errors in terms of the L2-norm of 4.22% and 1.35%, respectively.","PeriodicalId":368182,"journal":{"name":"2009 IEEE International Ultrasonics Symposium","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of an analytical solution to the Burgers equation based on Volterra series\",\"authors\":\"M. Schiffner, M. Mleczko, G. Schmitz\",\"doi\":\"10.1109/ULTSYM.2009.5442057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple, well-interpretable, and explicit analytical solution to the Burgers equation based on Volterra series is derived. Its region of convergence is investigated and a method for the computationally efficient numerical evaluation of the associated Volterra polynomials is presented. For a given boundary condition, numerical results are compared to a widely-used numerical standard solution. After a propagation distance of 10 cm in steps of 5 mm the Volterra polynomials of degree 2 and 3 achieve relative errors in terms of the L2-norm of 4.22% and 1.35%, respectively.\",\"PeriodicalId\":368182,\"journal\":{\"name\":\"2009 IEEE International Ultrasonics Symposium\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2009.5442057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2009.5442057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

导出了基于Volterra级数的Burgers方程的一个简单的、易于解释的、明确的解析解。研究了它的收敛区域,并给出了一种计算效率高的相关Volterra多项式数值计算方法。对于给定的边界条件,将数值结果与广泛使用的数值标准解进行比较。在5 mm步长传播10 cm后,2阶和3阶Volterra多项式的l2范数相对误差分别为4.22%和1.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of an analytical solution to the Burgers equation based on Volterra series
A simple, well-interpretable, and explicit analytical solution to the Burgers equation based on Volterra series is derived. Its region of convergence is investigated and a method for the computationally efficient numerical evaluation of the associated Volterra polynomials is presented. For a given boundary condition, numerical results are compared to a widely-used numerical standard solution. After a propagation distance of 10 cm in steps of 5 mm the Volterra polynomials of degree 2 and 3 achieve relative errors in terms of the L2-norm of 4.22% and 1.35%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信